Thermal properties of synthetic ester-based transformer oil during ageing in laboratory conditions

Author(s):  
V. Haramija ◽  
D. Vrsaljko ◽  
V. Durina
2016 ◽  
Vol 45 (10) ◽  
pp. 4755-4761 ◽  
Author(s):  
Amr M. Abd-Elhady ◽  
Mohamed E. Ibrahim ◽  
T. A. Taha ◽  
Mohamed A. Izzularab

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Qi Wang ◽  
Muhammad Rafiq ◽  
Yuzhen Lv ◽  
Chengrong Li ◽  
Kai Yi

Nanofluids have the potential to become the alternatives of conventional transformer oil for their exquisite electrical and thermal properties. Three kinds of nanoparticles with distinct conductivities, namely, nonconductive nanoparticle Al2O3, conductive nanoparticle Fe3O4, and semiconductive nanoparticle TiO2, with different concentrations from 5% to 40% w/v were selected and suspended into transformer oil to develop nanofluids. The lightening impulse breakdown strengths of the oil samples with and without nanoparticles were measured according to IEC standard methods. The positive impulse breakdown strength indicated that breakdown strength is first increased up to the maximum value at certain concentration and then starts decreasing. The results of negative impulse breakdown manifested that the breakdown voltages of nanofluids with different concentrations were less than the breakdown voltage of pure transformer oil. Different effect mechanisms of dielectric and conductive nanoparticles were also used to describe the difference among three prepared nanofluids.


2020 ◽  
Vol 13 (3) ◽  
pp. 175-182
Author(s):  
Mushtaq I. Hasan ◽  
Adnan A. Ugla ◽  
Hassan S. Kadhim

In this paper, an experimental electrical distribution transformer was studied and a new technique was proposed to improve the performance of a new mixed cooling consisting of pure transformer oil, paraffin wax and nanoparticles. The experiment was carried out on a small transformer that was done by taking a model with dimensions (15 * 10 * 10) cm to facilitate calculations. Paraffin wax absorbs the heat generated in the transformer due to the smelting process that can be used to cool electrical appliances. Nanoparticles have good thermal properties and lead to increased oil insulation to thermal improvements in transformer oil with dispersal of solid nanoparticles and their effects on transformer cooling. Three types of solid nanoparticles were used in this experiment (Al2O3, TiO2, and Sic) with a different volume concentration (1%, 3%, and 5%) and 4% paraffin wax as a certified added percentage for each process. The obtained results showed that when mixing paraffin wax and solid nanoparticles with transformer oil, the transformer cooling performance is improved by reducing the temperature. The best selected nanoparticles were found to be Sic and the reason for this is that Sic has a higher thermal conductivity compared to (Al2O3 and TiO2). The proposed hybrid oil reduces the temperature by 10 ° C (in the case of PCM and Sic) and it is possible to improve the cooling performance of electrical transformers.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1953 ◽  
Author(s):  
Zbigniew Nadolny ◽  
Grzegorz Dombek

The article discusses thermal properties of synthetic ester admixed with nanoparticles. The analyzed thermal properties were: thermal conductivity λ, kinematic viscosity υ, density ρ, specific heat cp, and the thermal expansion factor β- all obtained by means of measurements. On the basis of these, the authors calculated the heat transfer factor α, which determines the ability of the liquid to heat transport. The authors used nanoparticles of fullerene C60 and titanium oxide TiO2. The analysis of the thermal properties was done for the temperatures of 25, 40, 60 and 80 °C. The authors analyzed the impact of nanoparticles C60 and TiO2 on thermal properties of synthetic ester. They proved that fullerene C60 in principle had no influence on heat transfer factor α of the ester, while titanium oxide TiO2 had some positive influence on the factor, the value of which increased about 1–3%.


1960 ◽  
Vol 23 ◽  
pp. 332-336 ◽  
Author(s):  
W WENDLANDT ◽  
J VANTASSEL ◽  
G ROBERTHORTON
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document