Design and performance analysis of a magnetically levitated vertical axis wind turbine based axial flux PM generator

Author(s):  
Nirav Patel ◽  
M. Nasir Uddin
2020 ◽  
Author(s):  
V. Praveen Kumar ◽  
Venkatesan Sorakka Ponnappan ◽  
M. Sunil Kumar ◽  
R. Rajasekar ◽  
Kanimozhi Balakrishnan ◽  
...  

2018 ◽  
Vol 7 (4.13) ◽  
pp. 74 ◽  
Author(s):  
Muhd Khudri Johari ◽  
Muhammad Azim A Jalil ◽  
Mohammad Faizal Mohd Shariff

As the demand for green technology is rising rapidly worldwide, it is important that Malaysian researchers take advantage of Malaysia’s windy climates and areas to initiate more power generation projects using wind. The main objectives of this study are to build a functional wind turbine and to compare the performance of two types of design for wind turbine under different speeds and behaviours of the wind. A three-blade horizontal axis wind turbine (HAWT) and a Darrieus-type vertical axis wind turbine (VAWT) have been designed with CATIA software and constructed using a 3D-printing method. Both wind turbines have undergone series of tests before the voltage and current output from the wind turbines are collected. The result of the test is used to compare the performance of both wind turbines that will imply which design has the best efficiency and performance for Malaysia’s tropical climate. While HAWT can generate higher voltage (up to 8.99 V at one point), it decreases back to 0 V when the wind angle changes. VAWT, however, can generate lower voltage (1.4 V) but changes in the wind angle does not affect its voltage output at all. The analysis has proven that VAWT is significantly more efficient to be built and utilized for Malaysia’s tropical and windy climates. This is also an initiative project to gauge the possibility of building wind turbines, which could be built on the extensive and windy areas surrounding Malaysian airports.  


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Vincenzo Dossena ◽  
Giacomo Persico ◽  
Berardo Paradiso ◽  
Lorenzo Battisti ◽  
Sergio Dell'Anna ◽  
...  

This paper presents the results of a wide experimental study on an H-type vertical axis wind turbine (VAWT) carried out at the Politecnico di Milano. The experiments were carried out in a large-scale wind tunnel, where wind turbines for microgeneration can be tested in real-scale conditions. Integral torque and thrust measurements were performed, as well as detailed aerodynamic measurements to characterize the flow field generated by the turbine downstream of the rotor. The machine was tested in both a confined (closed chamber) and unconfined (open chamber) environment, to highlight the effect of wind tunnel blockage on the aerodynamics and performance of the VAWT under investigation. The experimental results, compared with the blockage correlations presently available, suggest that specific correction models should be developed for VAWTs. The experimental thrust and power curves of the turbine, derived from integral measurements, exhibit the expected trends with a peak power coefficient of about 0.28 at tip-speed ratio equal to 2.5. Flow measurements, performed in three conditions for tip speed ratio equal to 1.5, 2.5, and 3.5, show the fully three-dimensional character of the wake, especially in the tip region where a nonsymmetrical wake and tip vortex are found. The unsteady evolution of the velocity and turbulence fields further highlights the effect of aerodynamic loading on the wake unsteadiness, showing the time-dependent nature of the tip vortex and the onset of dynamic stall for tip speed ratio lower than 2.


Sign in / Sign up

Export Citation Format

Share Document