scholarly journals Comparison of horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT)

2018 ◽  
Vol 7 (4.13) ◽  
pp. 74 ◽  
Author(s):  
Muhd Khudri Johari ◽  
Muhammad Azim A Jalil ◽  
Mohammad Faizal Mohd Shariff

As the demand for green technology is rising rapidly worldwide, it is important that Malaysian researchers take advantage of Malaysia’s windy climates and areas to initiate more power generation projects using wind. The main objectives of this study are to build a functional wind turbine and to compare the performance of two types of design for wind turbine under different speeds and behaviours of the wind. A three-blade horizontal axis wind turbine (HAWT) and a Darrieus-type vertical axis wind turbine (VAWT) have been designed with CATIA software and constructed using a 3D-printing method. Both wind turbines have undergone series of tests before the voltage and current output from the wind turbines are collected. The result of the test is used to compare the performance of both wind turbines that will imply which design has the best efficiency and performance for Malaysia’s tropical climate. While HAWT can generate higher voltage (up to 8.99 V at one point), it decreases back to 0 V when the wind angle changes. VAWT, however, can generate lower voltage (1.4 V) but changes in the wind angle does not affect its voltage output at all. The analysis has proven that VAWT is significantly more efficient to be built and utilized for Malaysia’s tropical and windy climates. This is also an initiative project to gauge the possibility of building wind turbines, which could be built on the extensive and windy areas surrounding Malaysian airports.  

The consumption of electricity in urban as well as rural is increasing every day and became an essential commodity for household and industrial purposes. Unfortunately the availability of electrical energy in India is not sufficient to the required demand and it is essential to discover and generate energy from non-conventional sources with cheap cost. On the same time it is necessary to reduce the consumption of conventional sources and to save fuel. Among all the renewable resources, wind is one of the best resources available all the time at free of cost. Especially vertical axis wind turbines (VAWT) are self-starting, omni directional. They require no yaw mechanism to continuously orient towards the wind direction and provide a more reliable energy conversion technology, as compared to horizontal axis wind turbine. Particularly savonius vertical axis wind turbines (SVAWT) are suitable and practically possible at low or uncertain wind speed regimes. They can be fitted on rooftops and also suitable for the urban areas where electricity is not available properly. This project deals with the fabrication and performance evaluation of savonius vertical axis wind turbine using two blade rotor. The amount of power developed by the wind turbine is calculated under theoretical and practical conditions and aerodynamics coefficients are also estimated. And various design parameters of savonious rotor are identified and determined.


Author(s):  
David Marten ◽  
Juliane Wendler ◽  
Georgios Pechlivanoglou ◽  
Christian Navid Nayeri ◽  
Christian Oliver Paschereit

A double-multiple-streamtube vertical axis wind turbine simulation and design module has been integrated within the open-source wind turbine simulator QBlade. QBlade also contains the XFOIL airfoil analysis functionalities, which makes the software a single tool that comprises all functionality needed for the design and simulation of vertical or horizontal axis wind turbines. The functionality includes two dimensional airfoil design and analysis, lift and drag polar extrapolation, rotor blade design and wind turbine performance simulation. The QBlade software also inherits a generator module, pitch and rotational speed controllers, geometry export functionality and the simulation of rotor characteristics maps. Besides that, QBlade serves as a tool to compare different blade designs and their performance and to thoroughly investigate the distribution of all relevant variables along the rotor in an included post processor. The benefits of this code will be illustrated with two different case studies. The first case deals with the effect of stall delaying vortex generators on a vertical axis wind turbine rotor. The second case outlines the impact of helical blades and blade number on the time varying loads of a vertical axis wind turbine.


2019 ◽  
pp. 68-76

Modelo Teórico de los Sistemas de Aerogeneración Eléctrica para las Turbinas Eólicas de Eje Vertical Theoretical Model of Electric Aerogeneration Systems for Vertical Axis Wind Turbines Anthony Pinedo, Guillermo Ramírez, Lincoln Chiguala, Juan Estrada, David Asmat, Renny Nazario, Daniel Delfín, Lourdes Noriega, Silvia Aguilar, Randy Rosas, Luisa Juárez DOI: https://doi.org/10.33017/RevECIPeru2009.0027/ RESUMEN Existen dos tipos de sistemas de aerogeneración eléctrica por turbinas eólicas, los llamados de eje horizontal (HAWT) y los de eje vertical (VAWT). Ambos proponen ventajas y desventajas, dependiendo de muchos factores. Pero en general, no fue hasta hace unos años que el segundo tipo había sido ignorado, debido a la poca potencia que producía en comparación con los HAWT. Pero con la adaptación de un sistema de levitación, y un nuevo sistema de inducción magnética, las VAWT, lograron incrementar notablemente la energía obtenida, llegando incluso a superar a los HAWT. A pesar que los modelos VAWT han sido harto estudiados en cuanto al esquema experimental y de diseño, no se formuló ninguna explicación sólida, partiendo de principios básicos, sobre el funcionamiento de los VAWT. En este trabajo, se propone un modelo teórico del funcionamiento de los mismos. Para ello, se realizan tres estudios: la interacción del viento con las aspas del aerogenerador, el sistema de levitación magnética y la producción de energía eléctrica por inducción magnética. Estos tres fenómenos, permiten definir y predecir el funcionamiento de tal sistema de aerogeneración. Además, permite «visualizar» la influencia de los diferentes parámetros sobre la eficiencia del sistema, y así pues, poder manejar, los parámetros que controlamos experimentalmente, para obtener una eficiencia óptima. Palabras clave: aerogeneración eléctrica, turbinas de aire, eje vertical, levitación magnética. ABSTRACT There are two types of systems of electric aerogeneration by using wind turbines, one is called horizontal axis wind turbine (HAWT) and the other one is called vertical axis wind turbine (VAWT). Both of them have advantages and disadvantages depending on many factors. Since the second one had produced lees power than the first one, they were ignored. However, the adaptation of a levitation system and a new system of magnetic induction made VAWT increase the power produced and exceed the HAWT. Although VAWT models were studied enough in the design and experimental scheme, there is no solid explanation, based on basic principles, on the operation of the VAWT. In this paper is proposed a theoretical model of VAWT operation. Therefore, three studies are done: the interaction between wind and blades of the turbine, the magnetic levitation system and the energy production by magnetic induction. Those studies make us able to know and predict the operation of those systems. Since, we shall know how many factors are affecting the efficiency of the system; we shall be able to control those parameters in order to get the best efficiency. Keywords: electric aerogeneration, vertical axis wind turbine, magnetic levitation.


2014 ◽  
Vol 4 (2) ◽  
Author(s):  
I Kade Wiratama ◽  
Made Mara ◽  
L. Edsona Furqan Prina

The willingness of electrical energy is one energy system has a very important role in the economic development of a country's survival. As one energy source (wind) can be converted into electrical energy with the use of a horizontal axis wind turbine. Wind Energy Conversion Systems (WECS) that we know are two wind turbines in general, ie the horizontal axis wind turbine and vertical axis wind turbine is one type of renewable energy use wind as an energy generator. The purpose of this study was to determine the effect of the number of blade and the radius chord of rotation (n), Torque (T), Turbine Power (P), Power Coefficient (CP) and Tip Speed Ratio (λ) generated by the horizontal axis wind turbine with form linear taper. The results show that by at the maximum radius of the chord R3 the number blade 4 is at rotation = 302.700 rpm, Pturbine = 7.765 watt, Torque = 0.245 Nm, λ = 3.168 and Cp = 0.403 or 40.3%.


2013 ◽  
Vol 860-863 ◽  
pp. 314-318
Author(s):  
Feng Ji ◽  
Xiao Jian Feng ◽  
Dong Liang Wang

Traditional wind turbines are difficulty to work well in built-up areas due to wind conditions of low speed, turbulence and frequent changing direction. A long-term wind observation work has been done to understand the characteristics of urban wind by installing a small weather station on the balcony at top floor of a residential building. Based on the observation results, a new structure for low speed wind turbine in built-up areas was designed. This structure can be used for either horizontal axis wind turbine or vertical axis wind turbine. Some mesh models were established to simulate the effect through CFD software. In this structure, growth rate of wind velocity is about 1.25 times; wind turbulence converts to laminar; and yawing angel of turbine motor shafts neednt change any more. Prototype testing draws better conclusions: growth rate of wind velocity is more than 1.4 times. Therefore, traditional wind turbines can work well in built-up areas through this new structure.


Author(s):  
Changduk Kong ◽  
Haseung Lee

Since the energy crisis and the environmental issue have been focused due to excessive fossil fuel consumption, the wind power has been considered as an important renewable energy source. Recently, several MW class large scale wind turbine systems have been developed in some countries. Even though the large scale wind turbine can effectively produce the electrical power, the small scale wind turbines have been continuously developed due some advantages, for instance, it can be easily built by low cost without any limitation of location, i.e. even in city. In case of small scale wind turbines, the vertical axis wind turbine (VAWT) is used in city having frequent wind direction change, even though it has a bit lower efficient than the horizontal axis wind turbine. Furthermore, most small scale wind turbine systems have been designed at the rated wind speed of around 12m/s. This work is to design a high efficiency 500W class composite VAWT blade which is applicable to relatively low speed region. In the aerodynamic design of blade, the parametric studies are carried out to decide an optimal aerodynamic configuration. The aerodynamic efficiency and performance of the designed VAWT is confirmed by the CFD analysis. The structural design is performed by the load case study, the initial sizing using the netting rule and the rule of mixture, the structural analysis using FEM, the fatigue life estimation and the structural test. The prototype blade is manufactured by the hand lay-up and the matched die molding. The experimental structural test results are compared with the FEM analysis results. Finally, to evaluate the prototype VAWT including designed blades, the performance test is performed using a truck to simulate the various range wind speeds and some measuring equipments. According to the performance evaluation result, the estimated performance is well agreed with the experimental test result in all operating ranges.


2014 ◽  
Vol 521 ◽  
pp. 99-103
Author(s):  
Ling Zhang ◽  
Hui Xia Sheng ◽  
Da Fei Guo

A three-dimensional unsteady numerical study of the streaming flow field of the1.2 MW horizontal axis wind turbines which operation in the 11.26 m/s under the uniform wind and the shear wind have been carried out in this paper. according to the simulation results to understand the effect of uniform flow and the dynamic wind shear flow to the output power of wind turbine and the aerodynamics. results showed that: Under the uniform wind,Wind turbine power calculation values are in good agreement with the design value ,Wind turbines under the influence of wind shear can lead to change in load and performance on the surface of the blade.


2019 ◽  
pp. 0309524X1987402 ◽  
Author(s):  
Gareth Erfort ◽  
Theodor W von Backström ◽  
Gerhard Venter

Vertical-axis wind turbines have been confined to small-scale generation in urban environments where their omnidirectional capability offers them an advantage over the more ubiquitous horizontal-axis wind turbine. With a drive towards renewable energy, more opportunities exist for the implementation of wind turbines in a multitude of environments. Based on its inherent operational drawbacks, the vertical-axis wind turbine has not undergone extensive investigation. Recently, there has been a resurgence of interest in the technology. This article addresses the torque ripple, a variation in torque produced by the turbine, present during operation. The variation in torque generated by a vertical-axis wind turbine increases the likelihood of failure due to fatigue. Current treatment is symptomatic and addresses the result of the torque fluctuation and not the cause. A novel blade design, capable of altering the lift and drag response through shape alteration, is presented as a solution. The blade design and operation is achieved through genetic algorithm optimization and computational fluid dynamic simulations. Comparisons with previous work show the novel blade presented here surpasses the reduction seen with pitching solutions. A 25% reduction in torque ripple was demonstrated for a 17% reduction in performance coefficient using the surface distortion approach. This surpasses the foil pitching approach which achieved a 15% torque ripple reduction for the same loss in performance coefficient.


Sign in / Sign up

Export Citation Format

Share Document