A method to measure zero sequence impedances of transmission lines by using the two-terminal measured data

Author(s):  
Jun Tang ◽  
Jinlong Xu ◽  
Yang Gao ◽  
Zhiyong Chen ◽  
Yang Zhou ◽  
...  
Author(s):  
Nishant H. Kothari ◽  
Bhavesh R. Bhalja ◽  
Vivek Pandya ◽  
Pushkar Tripathi

Abstract This paper presents a new fault classification technique for Thyristor-Controlled Series-Compensated (TCSC) transmission lines using Support Vector Machine (SVM). The proposed technique is based on the utilization of post-fault magnitude of Rate-of-Change-of-Current (ROCC). Fault classification has been carried out by giving ROCC of three-phases and zero sequence current as inputs to SVM classifier. The performance of SVM as a binary-class, and multi-class classifier has been evaluated for the proposed feature. The validity of the suggested technique has been tested by modeling a TCSC based 400 kV, 300 km long transmission line using PSCAD/EMTDC software package. Based on the above model, a large number of diversified fault cases (41,220 cases) have been generated by varying fault and system parameters. The effect of window length, current transformer (CT) saturation, noise-signal, and sampling frequency have also been studied. It has been found that the proposed technique provides an accuracy of 99.98% for 37,620 test cases. Moreover, the performance of the suggested technique has also been found to be consistent upon evaluating in a 12-bus power system model consisting of a 365 kV, 60 Hz, 300 km long TCSC line. Comparative evaluation of the proposed SVM based technique with other recent techniques clearly indicates its superiority in terms of fault classification accuracy.


Author(s):  
Songling Pang ◽  
Fali Tan ◽  
Hailong Zhao ◽  
Meng Zhang ◽  
Jian Liao ◽  
...  

Author(s):  
Suman Nelaturi ◽  
Nookala Venkata Satya Narasimha Sarma

This communication reported the patch antenna working at Wi-Fi and 5G bands. To acquire compactness the side lengths of the patch are taken based on upper-frequency band (3.3 GHz). Dual-band operation (lower resonating band) is realized by loading the Mushroom Unit Cell (MUC) along the bottom right corner of the patch. To obtain Circular Polarization (CP) at the 5G band the conventional patch is modified with fractal boundary. This blend of the Double Negative Transmission Lines metamaterials (DNG TL), as well as fractal concepts yielded good compactness suitable for ultra-thin portable gadgets. Measured results have good correlation with simulated data from HFSS. The obtained bandwidths at the lower and upper bands are 2.51 % and 6.23 % when the Poly fractal curves are introduced. CP bandwidth of the proposed antenna at 5G band obtained from the measured data is 2.35 % which is the highest to the best of authors' knowledge for this type of thin antennas.


Sign in / Sign up

Export Citation Format

Share Document