scholarly journals Patch Antenna Based on MUC for Wi-Fi and 5G

Author(s):  
Suman Nelaturi ◽  
Nookala Venkata Satya Narasimha Sarma

This communication reported the patch antenna working at Wi-Fi and 5G bands. To acquire compactness the side lengths of the patch are taken based on upper-frequency band (3.3 GHz). Dual-band operation (lower resonating band) is realized by loading the Mushroom Unit Cell (MUC) along the bottom right corner of the patch. To obtain Circular Polarization (CP) at the 5G band the conventional patch is modified with fractal boundary. This blend of the Double Negative Transmission Lines metamaterials (DNG TL), as well as fractal concepts yielded good compactness suitable for ultra-thin portable gadgets. Measured results have good correlation with simulated data from HFSS. The obtained bandwidths at the lower and upper bands are 2.51 % and 6.23 % when the Poly fractal curves are introduced. CP bandwidth of the proposed antenna at 5G band obtained from the measured data is 2.35 % which is the highest to the best of authors' knowledge for this type of thin antennas.

2014 ◽  
Vol 13 ◽  
pp. 1357-1360 ◽  
Author(s):  
Kushmanda Saurav ◽  
Debdeep Sarkar ◽  
Kumar Vaibhav Srivastava

Author(s):  
Kwok L. Chung ◽  
Xiaoqing Yan ◽  
Yansheng Li ◽  
Yingsong Li

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Kush Agarwal ◽  
Saugata Dutta

This paper proposes a compact microstrip patch antenna for operating in 2.4 GHz ISM and 3.5 GHz WiMAX bands with circularly polarized (CP) radiation. The CP radiation in dual-bands is a result of two multilayered truncated corner stacked square patches, while the reactive impedance surface (RIS) is used for antenna size miniaturization for the lower operating frequency band. Since the overall lateral antenna dimensions are controlled by the lower frequency band (higher wavelength), reducing the electrical size of the antenna for lower band results in overall smaller antenna dimensions. The measured 3-dB axial ratio bandwidths of the in-house fabricated antenna prototype are 6.1% (2.40–2.55 GHz) for the lower band and 5.7% (3.40–3.60 GHz) for the upper band, while the 10-dBS11bandwidths for the two bands are 8.1% (2.39–2.59 GHz) and 6.9% (3.38–3.62 GHz), respectively. The maximum gain at boresight for the lower band is 2.93 dBic at 2.5 GHz, while the gain for the upper band is 6.26 dBic at 3.52 GHz. The overall volume of the proposed antenna is 0.292λo × 0.292λo × 0.044λo, whereλois the corresponding free-space wavelength at 2.5 GHz.


In this communication, a circular patch antenna is reported for dual- band operation based on VIAs. Initially the patch is resonating at single band with Linear Polarization (LP), and the Circular Polarization (CP) is obtained by inserting semi circular cuts at the edges of circular patch. The second band is achieved by loading the vertical metallic VIAs along the circumference of the patch antenna. The reported antenna is working at 2.4 GHz (Wi-Fi) and 3.5 GHz (5G) bands with Return Loss Band Width (RLBW) of 4.83% and 10.37% respectively. The Axial Ratio (AR) bandwidth at 5G band is 2.38% (3.31- 3.39 GHz)


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7953
Author(s):  
Sarosh Ahmad ◽  
Adnan Ghaffar ◽  
Niamat Hussain ◽  
Nam Kim

A simple dual-band patch antenna with paired L-shap slots for on- and off-body communications has been presented in this article. The proposed antenna resonates in the industrial, scientific, and medical (ISM) band at two different frequencies, at 2.45 GHz and 5.8 GHz. At the lower frequency band, the antenna’s radiation pattern is broadsided directional, whereas it is omni-directional at the higher frequency band. The efficiency and performance of the proposed antenna under the influence of the physical body are improved, and the specific absorption rate (SAR) value is significantly reduced by creating a full ground plane behind the substrate. The substrate’s material is FR-4, the thickness of which is 1.6 mm and it has a loss tangent of tanδ = 0.02. The overall size of the proposed design is 40 mm × 30 mm × 1.6 mm. Physical phantoms, such as skin, fat and muscle, are used to evaluate the impact of physical layers at 2.45 GHz and 5.8 GHz. The SAR values are assessed and found to be 0.19 W/kg and 1.18 W/kg at 2.45 GHz and 5.8 GHz, respectively, over 1 gram of mass tissue. The acquired results indicate that this antenna can be used for future on- and off-body communications and wireless services.


In this paper, a rectangular patch antenna with slits for dual band capabilities is presented. The suggested antenna works for two frequencies which are at 2.5 GHz and 5.1 GHz. The first operating frequency is in the band of 2.3 to 2.7GHz with -16.8dB reflection coefficient at 2.5GHz resonating frequency, whereas the second band is 4.6 to 5.5GHz with -29.2dB reflection coefficient at 5.1GHz resonating frequency. The simulation results exhibit that, the suggested antenna works for dual band frequency having impedance bandwidth of 482 and 844 MHz respectively. The gain is observed as 2.9 dBi and 4.2 dBi of respective bands. The first frequency band can be used for Industrial, Scientific and Medical(ISM) applications and second frequency band can be used for C-band applications.


2018 ◽  
Vol 7 (3) ◽  
pp. 40-45 ◽  
Author(s):  
S. Nelaturi ◽  
N.V.S.N. Sarma

In this paper, a novel compact microstrip patch antenna is proposed for Wi- Fi and WiMAX bands. To achieve miniaturization the dimensions of the square radiating patch are chosen with reference to the high frequency band (3.3 GHz). The dual band is achieved by loading a Complementary Split Ring Resonator (CSRR) into the radiating patch. The left handed nature of the CSRR is the cause for low frequency band (2.4 GHz). To improve the return loss bandwidth and axial ratio bandwidth at upper band the fractal concept is introduced along the edges of the square patch. Thus a low volume dual band antenna is simulated using HFSS. A comparison with measured data is also presented. The fabricated antenna is found to be occupying 25% less volume (with reference to 2.4 GHz) than existing antennas which is mainly due to the blending of the two recent concepts ‘metamaterials and fractals’.


2021 ◽  
Author(s):  
Ahmed Mosaad Mabrouk ◽  
Ahmed Abd Elmoneam Ibrahim ◽  
Hesham Fathi Hamed

Abstract This paper presents reconfigurable frequency and polarization FSS-based with photoconductive switches in a single and dual-band operation for antenna applications at the terahertz band. The single band FSS unit-cell element exhibits frequency reconfigurability between 0.62 THz and 0.7 THz. It also converts the LP waves into CP over a frequency band ranging from 0.59 THz to 0.8 THz (30 % 3-dB BW). The dual-band FSS unit-cell element exhibits frequency reconfigurability between (0.42 THz and 1.03 THz) when the switches are turned ON and (0.51 THz and 0.865 THz) when the switches are turned OFF. Moreover, it exhibits polarization conversion over two bands from 0.46 THz to 0.56 THz (20% 3-dB B.W) and from 0.82 THz to 0.91 THz (12 % 3-dB B.W). The dual-band FSS unit-cell element is arranged in a 7 x 7 array and used as a reflector for two dipole antennas (A and B) operating at 0.82 THz and 0.5 THz, respectively. The same dual-band FSS-based surface enhances their gain to about 8.4 dBi and converts their polarization from LP to CP at 0.82 THz and 0.5 THz, respectively.


Sign in / Sign up

Export Citation Format

Share Document