Electromagnetic field coupling to buried wires: Comparison of frequency domain wire antenna and transmission line model

Author(s):  
Dragan Poljak ◽  
Vicko Doric ◽  
Silvestar Sesnic ◽  
Khalil El Khamlichi Drissi ◽  
Kamal Kerroum
2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Dragan Poljak ◽  
Khalil El Khamlichi Drissi

The paper deals with two different approaches for the analysis of electromagnetic field coupling to finite length overhead wire: the wire antenna theory (AT) and the transmission line (TL) method. The analysis is carried out in the frequency and time domain, respectively. Within the frequency domain analysis the wire antenna formulation deals with the corresponding set of Pocklington integrodifferential equation, while the transmission line model uses the telegrapher's equations. The set of Pocklington equations is solved via the Galerkin-Bubnov scheme of the Indirect Boundary Element Method (GB-IBEM), while the telegrapher’s equations are treated using the chain matrix method and the modal equation to derive per-unit-length parameters. For the case of the time domain analysis AT model uses the space-time Hallen integral equation set, while TL approach deals with the time domain version of the telegrapher’s equations. Hallen equations are handled via time domain version of GB-IBEM, while time domain telegrapher’s equations are solved by using Finite Difference Time Domain (FDTD) method. Many illustrative computational examples for the frequency and time domain response, respectively, for several configurations of overhead wires, obtained via different approaches, are given in this paper.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
V. Javor

Lightning electromagnetic field is obtained by using “engineering” models of lightning return strokes and new channel-base current functions and the results are presented in this paper. Experimentally measured channel-base currents are approximated not only with functions having two-peaked waveshapes but also with the one-peaked function so as usually used in the literature. These functions are simple to be applied in any “engineering” or electromagnetic model as well. For the three “engineering” models: transmission line model (without the peak current decay), transmission line model with linear decay, and transmission line model with exponential decay with height, the comparison of electric and magnetic field components at different distances from the lightning channel-base is presented in the case of a perfectly conducting ground. Different heights of lightning channels are also considered. These results enable analysis of advantages/shortages of the used return stroke models according to the electromagnetic field features to be achieved, as obtained by measurements.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Dragan Poljak ◽  
Silvestar Šesnić ◽  
Khalil El-Khamlichi Drissi ◽  
Kamal Kerroum ◽  
Sergey Tkachenko

The paper examines the antenna model for the transient analysis of electromagnetic field coupling to straight wire configurations buried in a lossy half-space. The wire antenna theory (AT) model is implemented directly in the time domain and it is based on the corresponding space-time Pocklington integrodifferential equation. The solution of the Pocklington equation is carried out analytically. The obtained results are compared against the results calculated via the transmission line (TL) approach. The TL approach is based on the telegrapher’s equations, which are solved using the modified transmission line method (MTLM) and Finite Difference Time Domain (FDTD) technique, respectively. Some illustrative computational examples for buried straight wire scatterer and horizontal grounding electrode are given throughout this work.


Transmission Line model are an important role in the electrical power supply. Modeling of such system remains a challenge for simulations are necessary for designing and controlling modern power systems.In order to analyze the numerical approach for a benchmark collection Comprehensive of some needful real-world examples, which can be utilized to evaluate and compare mathematical approaches for model reduction. The approach is based on retaining the dominant modes of the system and truncation comparatively the less significant once.as the reduced order model has been derived from retaining the dominate modes of the large-scale stable system, the reduction preserves the stability. The strong demerit of the many MOR methods is that, the steady state values of the reduced order model does not match with the higher order systems. This drawback has been try to eliminated through the Different MOR method using sssMOR tools. This makes it possible for a new assessment of the error system Offered that the Observability Gramian of the original system has as soon as been thought about, an H∞ and H2 error bound can be calculated with minimal numerical effort for any minimized model attributable to The reduced order model (ROM) of a large-scale dynamical system is essential to effortlessness the study of the system utilizing approximation Algorithms. The response evaluation is considered in terms of response constraints and graphical assessments. the application of Approximation methods is offered for arising ROM of the large-scale LTI systems which consist of benchmark problems. The time response of approximated system, assessed by the proposed method, is also shown which is excellent matching of the response of original system when compared to the response of other existing approaches .


1990 ◽  
Vol 26 (2) ◽  
pp. 148 ◽  
Author(s):  
D. Kinowski ◽  
C. Seguinot ◽  
P. Pribetich ◽  
P. Kennis

Sign in / Sign up

Export Citation Format

Share Document