Flip-flop design using novel pulse generation technique

Author(s):  
Farshad Moradi ◽  
Dag Wisland ◽  
Jens Kargaard Madsen ◽  
Hamid Mahmoodi
Author(s):  
Habibullah Salim ◽  
Irma Husnaini ◽  
Asnil Asnil

This research aims to make buck converter prototype for PLTS system by using fuzzy logic controller. Buck converter is required in the PLTS system if the required unidirectional voltage is smaller than the output voltage of the solar cell. Buck converter used to convert 24 Volt dc voltage to 12 Volt dc with 60 watt capability. While fuzzy logic controller is used to improve buck converter performance based on pulse generation technique for switching. The application of fuzzy logic method is expected to improve the performance of the system by maintaining the stability of buck converter output voltage of 12 volts and reduce the output ripple value. Atmega8535 microcontroller is used to generate PWM pulses for switching on power circuits. The results obtained from the test using a 100 Ohm 5 Watt load obtained the buck converter output voltage of 12.4 Volt.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Kyong Hon Kim ◽  
Seoung Hun Lee ◽  
Vijay Manohar Deshmukh

We review the temporal dynamics of the laser output spectrum and polarization state of 1.55 μm wavelength single-mode (SM) vertical-cavity surface-emitting lasers (VCSELs) induced by external optical beam injection. Injection of an external continuous-wave laser beam to a gain-switched SM VCSEL near the resonance wavelength corresponding to its main polarization-mode output was critical for improvement of its laser pulse generation characteristics, such as pulse timing-jitter reduction, linewidth narrowing, pulse amplitude enhancement, and pulse width shortening. Pulse injection of pulse width shorter than the cavity photon lifetime into the SM VCSEL in the orthogonal polarization direction with respect to its main polarization mode caused temporal delay of the polarization recovery after polarization switching (PS), and its delay was found to be the minimum at an optimized bias current. Polarization-mode bistability was observed even in the laser output of an SM VCSEL of a standard circularly cylindrical shape and used for all-optical flip-flop operations with set and reset injection pulses of very low pulse energy of order of the 3.5~4.5 fJ.


2018 ◽  
Author(s):  
Asnil ◽  
Habibullah ◽  
Irma Husnaini

This research aims to make buck converter prototype for PLTS system by using fuzzy logic controller. Buck converter is required in the PLTS system if the required unidirectional voltage is smaller than the output voltage of the solar cell. Buck converter used to convert 24 Volt dc voltage to 12 Volt dc with 60 watt capability. While fuzzy logic controller is used to improve buck converter performance based on pulse generation technique for switching. The application of fuzzy logic method is expected to improve the performance of the system by maintaining the stability of buck converter output voltage of 12 volts and reduce the output ripple value. Atmega8535 microcontroller is used to generate PWM pulses for switching on power circuits.


Author(s):  
MANJULA M

In this paper, a novel low-power pulse-triggered flip-flop (FF) design is presented. First, the pulse generation control logic, an AND function, is removed from the critical path to facilitate a faster discharge operation. A simple twotransistor AND gate design is used to reduce the circuit complexity. Second, a conditional pulse-enhancement technique is devised to speed up the discharge along the critical path only when needed. As a result, transistor sizes in delay inverter and pulse-generation circuit can be reduced for power saving. Various post layout simulation results based on UMC CMOS 90- nm technology reveal that the proposed design features the best power-delay-product performance in seven FF designs under comparison. Its maximum power saving against rival designs is up to 38.4%. Compared with the conventional transmission gate-based FF design, the average leakage power consumption is also reduced by a factor of 3.52.


Sign in / Sign up

Export Citation Format

Share Document