A 4.8mW 22nm CMOS Fully-Integrated 60-GHz $3\times 3\times 2$ 3D Frequency-Shift Biosensor Array Using Vertically-Stacked LC Oscillators

Author(s):  
Akiyoshi Tanaka ◽  
Guowei Chen ◽  
Kiichi Niitsu
2011 ◽  
Vol 3 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Srdjan Glisic ◽  
J. Christoph Scheytt ◽  
Yaoming Sun ◽  
Frank Herzel ◽  
Ruoyu Wang ◽  
...  

A fully integrated transmitter (TX) and receiver (RX) front-end chipset, produced in 0.25 µm SiGe:C bipolar and complementary metal oxide semiconductor (BiCMOS) technology, is presented. The front-end is intended for high-speed wireless communication in the unlicensed ISM band of 9 GHz around 60 GHz. The TXand RX features a modified heterodyne topology with a sliding intermediate frequency. The TX features a 12 GHz in-phase and quadrature (I/Q) mixer, an intermediate frequency (IF) amplifier, a phase-locked loop, a 60 GHz mixer, an image-rejection filter, and a power amplifier. The RX features a low-noise amplifier (LNA), a 60 GHz mixer, a phase-locked loop (PLL), and an IF demodulator. The measured 1-dB compression point at the TX output is 12.6 dBm and the saturated power is 16.2 dBm. The LNA has measured noise figure of 6.5 dB at 60 GHz. Error-free data transmission with a 16 quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM) signal and data rate of 3.6 Gbit/s (without coding 4.8 Gbit/s) over 15 m was demonstrated. This is the best reported result regarding both the data rate and transmission distance in SiGe and CMOS without beamforming.


Author(s):  
Xiaowen Liu ◽  
Lin Li ◽  
Andrew J. Mason

Impedance spectroscopy is a powerful tool for characterizing materials that exhibit a frequency dependent behaviour to an applied electric field. This paper introduces a fully integrated multi-channel impedance extraction circuit that can both generate AC stimulus signals over a broad frequency range and also measure and digitize the real and imaginary components of the impedance response. The circuit was fabricated in a 0.5 μm complementary metal-oxide semiconductor. Tailored for cellular membrane interface characterization, the signal generator produces sinusoidal waves from 10 mHz to 10 kHz. To suit a variety of applications, the impedance extraction circuit provides a programmable current measurement range from 100 pA to 100 nA with a measured resolution of approximately 100 fA. Occupying only 0.045 mm 2 per measurement channel, the circuit is compact enough to include nearly 200 channels in a 3×3 mm 2 die area.


Author(s):  
Florian Starzer ◽  
Markus Ortner ◽  
Hans Peter Forstner ◽  
Reinhard Feger ◽  
Andreas Stelzer

2017 ◽  
Vol 64 (3) ◽  
pp. 653-663 ◽  
Author(s):  
Yipeng Wang ◽  
Duona Luo ◽  
Quan Pan ◽  
Liwen Jing ◽  
Zhixin Li ◽  
...  
Keyword(s):  
60 Ghz ◽  

Sign in / Sign up

Export Citation Format

Share Document