Electromagnetic radiation probe using a detector circuit with a dual-band antenna system

Author(s):  
Mohammed M. Bait-Suwailam ◽  
Issa Al Balushi ◽  
Mohammed Al Sadairi ◽  
Mohammed Alalawi ◽  
Salim Al Risi
2020 ◽  
Vol 93 ◽  
pp. 11-21
Author(s):  
Kadidiatou Diallo ◽  
Aliou Diallo ◽  
Ibra Dioum ◽  
Samuel Ouya ◽  
Jean Marc Ribero

2008 ◽  
Vol 7 ◽  
pp. 585-587 ◽  
Author(s):  
Zhijun Zhang ◽  
Wenhua Chen ◽  
Zhenghe Feng ◽  
M.F. Iskander

Author(s):  
K Phaebua ◽  
C Phongcharoenpanich ◽  
D Torrungrueng ◽  
N Surittikul ◽  
W Villarroel

2015 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
M.M. Bait-Suwailam

This study details an electromagnetic (EM) field radiation detector system that was developed for near-field low-frequency energy applications. The prototype constitutes the use of a dual-band monopole antenna system as a probe along with a detecting circuit. Furthermore, the prototype was equipped with a qualitative EM radiation strength display unit at its output stage. For proof of concept, the detecting probe was implemented on a printed-circuit board. Both numerical simulations were based on PSpice software (Cadence Design Systems, Inc., San Jose, California, USA) and measurements are presented and discussed. The EM field detector aimed to sense any potential sources of EM radiation from mobile phone units as well as WiFi access points, simultaneously, which is accomplished with the use of the dual-band antenna system. Such a sensitive detector has useful application as a stand-alone monitoring probe for troubleshooting as well as to identify sources of EM radiation interference threats for industrial high-speed electronic devices. Additionally, such a sensor is a potentially useful tool for site testing and scanning for optimal locations of base station masks for telecommunication service providers.  Other prototypes are also presented to illustrate the usefulness of such detectors in some of the aforementioned applications. 


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3022
Author(s):  
Haider Ali ◽  
Xin-Cheng Ren ◽  
Anas M. Hashmi ◽  
Muhammad Rizwan Anjum ◽  
Inam Bari ◽  
...  

The demand of 5G in modern communication era due to its high data rate, reliable connectivity and low latency is enormous. This paper presents a novel dual band antenna resonating at two distinct bands allotted for 5G services. The proposed antenna is composed of inverted L shape probes comprising a rectangular defected ground structure. The propose antenna covers 3.4–3.6 GHz and 5.4–5.6 GHz spectrum. In propose MIMO system, the efficiency ranges from 52 to 69% with peak gain of 3.1 dBi. The proposed antenna system is sufficiently isolated with minimum value of 13 dB and ECC less than 0.05 among any two radiating elements. Similarly, the channel capacity is found to be 38 and 39.5 at both resonating bands at 20 dB SNR and diversity and mean effective gains lies in acceptable range. The radiation characteristics of the proposed design shows that the proposed antenna is providing good diversity characteristics and SAR values have demonstrated to be safe for user vicinity. The proposed dual band antenna prototype is developed tested. With the measured results obtained, the MIMO system proposed can be seen as vital candidate for 5G LTE band 42 and 46 services.


Author(s):  
Melvin Chamakalayil Jose ◽  
Radha Sankararajan ◽  
Balakrishnapillai Suseela Sreeja ◽  
Mohammed Gulam Nabi Alsath ◽  
Pratap Kumar

Abstract In the proposed research paper, a novel compact, ultra-wideband electronically switchable dual-band omnidirectional to directional radiation pattern microstrip planar printed rectangular monopole antenna (PRMA) has been presented. The proposed antenna system has an optimum size of 0.26 λ0 × 0.28 λ0. A combination of radiators, reflectors, and two symmetrical grounds does place on the same layer of the rectangular microstrip PRMA. The frequency agility and the radiation pattern from omnidirectional to directional are achieved using two SMD PIN diodes (SMP1340-04LF). The directional radiation patterns with 180° phase shifts are achieved at the C-band frequency spectrum. The parametric study of the proposed antenna system was performed for different design parameters, and the antenna characteristics were analyzed. An antenna prototype is fabricated using the printed circuit board etching method by using RMI UV laser etching and cutting tools. The measurements of the proposed antenna are conducted in an anechoic chamber to validate the simulations. There are three states of operations due to two SMD PIN diodes being used in switching circuits. In state-I, the proposed antenna radiates at 6.185 GHz (5.275–6.6 75 GHz) in the Ф = 270° direction with a gain of 2.1 dBi, whereas in state-II, it radiates at 5.715 GHz (5.05–6.8 GHz) in the Ф = 90° direction with a gain of 2.1 dBi. In state-III, the antenna exhibits the X-band frequency with center frequency at 9.93 GHz (8.845–10.49 GHz), and the omnidirectional pattern offers a gain of 4.1 dBi. The features of the proposed antenna are suitable for high-speed wireless sensor network communication in industries such as chemical reactors in oil and gas and pharmaceuticals. It is also well suited for IoT and 5G-sub-6-GHz applications.


Sign in / Sign up

Export Citation Format

Share Document