Control Strategy to Enhance Power Capability of Power Conditioning Unit During FRT

Author(s):  
Nishij Kulkarni ◽  
Vasudeo Virulkar
Author(s):  
Alberto Traverso ◽  
Stefano Barberis ◽  
Davide Lima ◽  
Aristide F. Massardo

In this work the dynamic behaviour and the control strategy of a 12MWe size gas turbine hybridised with concentrated solar heat source has been investigated. Hybridised gas turbine cycles are attractive because of their high efficiency, potentially equal to combined cycle efficiency, and because of their dispatchable power capability. An existing gas turbine model has been modified into a hybrid layout to incorporate high temperature heat from a concentrated solar field, through a high pressure air-cooled receiver. The system does not involve any hot air valve and includes a ceramic thermal storage. The plant dynamic model was developed using the original TRANSEO simulation tool developed at the University of Genoa. Initially, plant steady-state performance is analysed, identifying potential issues. Then, the different dynamic operations (storage charging, discharging and bypass) are simulated, showing the feasibility of the control strategy proposed. Eventually, design recommendations are drawn to improve the flexibility and the time response of such kind of plants.


Author(s):  
Benhabib Choukri ◽  
Poure Philippe ◽  
Saadate Shahrokh

Since the development of the first control strategy for the active power filters (APF) introduced by H. Akagi [H. Akagi, Y. Kanazawa,A. Nabae, Generalized theory of the instantaneous reactive power in three-phase circuits, in: Proceedings of International Power Electronics Conference, Tokyo, Japan (1983) 1375–1386.], many efforts have been concentrated to improve their performances. However, when electrical networks supplies high current non-linear loads, a single inverter-based APF has limited power capability. In this paper, we studied parallel operation achieving high power level. More particularly, we examined a modular APF based on two three-phase inverters. This structure allows zero-sequence current circulating through the inverters, as demonstrated by using averaged modelling of the APF. To solve this problem and based on previous averaged model, we proposed a new optimal control strategy, suppressing the zero-sequence circulating current. Simulation results validate the proposed control.


2013 ◽  
Vol 101 (4) ◽  
pp. 925-941 ◽  
Author(s):  
Feng Wu ◽  
Ping Ju ◽  
Xiao-Ping Zhang ◽  
C. Qin ◽  
G. J. Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document