Surface deformation measurements of a finger-joint timber by object-oriented technique and digital speckle image correlation

Author(s):  
Liu Meihua ◽  
Zhang Lianwen ◽  
Wang Dongai ◽  
Li Lianjin
Vestnik MEI ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 101-108
Author(s):  
Anton Yu. Poroykov ◽  
◽  
Konstantin M. Lapitskiy ◽  

2021 ◽  
Author(s):  
Ali Mirzazade ◽  
Cosmin Popescu ◽  
Thomas Blanksvärd ◽  
Björn Täljsten

<p>This study is carried out to assess the applicability of using a digital image correlation (DIC) system in structural inspection, leading to deploy innovative instruments for strain/stress estimation along embedded rebars. A semi-empirical equation is proposed to predict the strain in embedded rebars as a function of surface strain in RC members. The proposed equation is validated by monitoring the surface strain in ten concrete tensile members, which are instrumented by strain gauges along the internal steel rebar. One advantage with this proposed model is the possibility to predict the local strain along the rebar, unlike previous models that only monitored average strain on the rebar. The results show the feasibility of strain prediction in embedded reinforcement using surface strain obtained by DIC.</p>


2016 ◽  
Vol 23 (3) ◽  
pp. 461-480 ◽  
Author(s):  
Sze-Wei Khoo ◽  
Saravanan Karuppanan ◽  
Ching-Seong Tan

Abstract Among the full-field optical measurement methods, the Digital Image Correlation (DIC) is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC) is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.


Sign in / Sign up

Export Citation Format

Share Document