Strand-level finite element model of stator AC copper losses in the high speed machines

Author(s):  
Wenliang Chen ◽  
Yujing Liu ◽  
Jahirul Islam ◽  
Dmitry Svechkarenko
2010 ◽  
Vol 143-144 ◽  
pp. 863-867
Author(s):  
Yong Tang ◽  
Qiang Wu ◽  
Xiao Fang Hu ◽  
Yu Zhong Li

The milling process of hard-to-cut material high manganese steel ZGMn13 was simulated and experimental studied based on Johnson-Cook material model and shear failure model.The high speed milling processing finite element model has established adopting arbitrary Lagrangian-Euler method (ALE) and the grid adaptive technology,The influence of milling parameters to milling force is analyzed in the high speed milling high manganese steel process. The simulated and experimental results being discussed are matched well. It certifies the finite element model is correct.


Author(s):  
Chiara Silvestri ◽  
Louis R. Peck ◽  
Kristen L. Billiar ◽  
Malcolm H. Ray

A finite element model of knee human ligaments was developed and validated to predict the injury potential of occupants in high speed frontal automotive collisions. Dynamic failure properties of ligaments were modeled to facilitate the development of more realistic dynamic representation of the human lower extremities when subjected to a high strain rate. Uniaxial impulsive impact loads were applied to porcine medial collateral ligament-bone complex with strain rates up to145 s−1. From test results, the failure load was found to depend on ligament geometric parameters and on the strain rate applied. The information obtained was then integrated into a finite element model of the knee ligaments with the potential to be used also for representation of ligaments in other regions of the human body. The model was then validated against knee ligament dynamic tolerance tests found in literature. Results obtained from finite element simulations during the validation process agreed with the outcomes reported by literature findings encouraging the use of this ligament model as a powerful and innovative tool to estimate ligament human response in high speed frontal automotive collisions.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Suchao Xie ◽  
Weilin Yang ◽  
Ping Xu

To solve the problems associated with multiple-vehicle simulations of railway vehicles including large scale modelling, long computing time, low analysis efficiency, need for high performance computing, and large storage space, the middle part of the train where no plastic deformation occurs in the vehicle body was simplified using mass and beam elements. Comparative analysis of the collisions between a single railway vehicle (including head and intermediate vehicles before, and after, simplification) and a rigid wall showed that variations in impact kinetic energy, internal energy, and impact force (after simplification) are consistent with those of the unsimplified model. Meanwhile, the finite element model of a whole high-speed train was assembled based on the simplified single-vehicle model. The numbers of nodes and elements in the simplified finite element model of the whole train were 63.4% and 61.6%, respectively, compared to those of the unsimplified model. The simplified whole train model using the above method was more accurate than the multibody model. In comparison to the full-size finite element model, it is more specific, had more rapid computational speed, and saved a large amount of computational power and storage space. Finally, the velocity and acceleration data for every car were discussed through the analysis of the collision between two simplified trains at various speeds.


2013 ◽  
Vol 662 ◽  
pp. 632-636
Author(s):  
Yong Sheng Zhao ◽  
Jing Yang ◽  
Xiao Lei Song ◽  
Zi Jun Qi

The quality of high speed machining is directly related to dynamic characteristics of spindle-toolholder interface. The paper established normal and tangential interactions of BT spindle-toolholder interface based on finite element contact theory, and analysed free modal in Abaqus/Standard. Then the result was compared with the experimental modal analysis. It shows that the finite element model is effective and could be applied in the future dynamic study of high-speed spindle system.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Peng-Fei Sun ◽  
Hong-Wu Huang ◽  
Shui-Ting Zhou ◽  
Yi-Jui Chiu ◽  
Meng Du ◽  
...  

This paper elaborates on the production mechanisms of standing waves during high-speed tire rolling and analyzes the relationship between the change of wavelength of sidewall waves and the vehicle velocity, from an oblique wave point of view. A finite element model for a 195/65R15 radial tire is established with the nonlinear analysis software ABAQUS, based on the tire structure and cord parameters. This paper comparatively analyzes the finite element simulation results and experimental results of the tire load-sinkage relation and the load vs inflatable section width relation and finds little difference between the simulation and experimental results. A similar analysis studies the change in the wavelength of sidewall standing waves at different vehicle velocities during high-speed tire rolling. The calculated value by the oblique wave approach, the value by simulation, and the experimental results demonstrate high consistency, concluding that during high-speed tire rolling, the wavelength of sidewall standing waves increases with vehicle velocity. Thus, the accuracy of the finite element model is verified under both static and dynamic conditions. Under a constant tire pressure and load, the impact of velocity change on tire-cord stress during high-speed tire rolling is studied based on the finite element model so as to identity the relation between the cord stress and standing waves.


2014 ◽  
Vol 684 ◽  
pp. 341-346
Author(s):  
Heng Yi Yuan

The shaft as an important parts of automobile transmission system, in the process of the car have the effect of rotational speed and torque. Due to the structural characteristics of its low frequency, small stiffness, universal joint, such as the existence of the additional moment drive shaft inevitably exist when high speed vibration phenomenon. So the shaft vibration problems to deal with the vehicle ride comfort, comfort and dynamic performance has important significance. On the basis of the finite element software ANSYS, the physical design of drive shaft. Analyzes the mapping grid finite element model of transmission shaft, facilitate accurate transmission shaft strength calculation. Based on the inherent frequency and vibration model of finite element method to calculate transmission shaft, using experimental modal technology for modal analysis of the shaft, the test results verify the reliability of the finite element model. On this basis, the drive shaft assembly constraint modal finite element analysis, can be used as the basis of further research.


2012 ◽  
Vol 591-593 ◽  
pp. 818-826 ◽  
Author(s):  
Chin Chung Wei ◽  
Jeng Haur Horng ◽  
Jen Fin Lin

High speed ball-screw system has serious friction heat to form thermal expansion to each component. An analyzing model considering with contact deformation and thermal expansion is established in realizing positioning error for a high speed ball-screw system. A finite element model of nut is also built in calculating elongation of nut. Surface strain of nut is measured by strain gages in order to confirm with data obtained from finite element model. Temperature of nut and screw were also measured by thermal couples and are used in calculation of elongation by the use of linear elongation equation. The tendency of positioning error is well estimated by the analyzing model. The model can be used in feedback positioning control factor and develop precision high speed ball-screw system.


Sign in / Sign up

Export Citation Format

Share Document