Design Method by Vector Magnetic Characteristic Analysis for upgrading Efficiency of Motor

Author(s):  
Masato Enokizono
2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


2006 ◽  
Vol 42 (4) ◽  
pp. 615-618 ◽  
Author(s):  
S. Urata ◽  
M. Enokizono ◽  
T. Todaka ◽  
H. Shimoji

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Mu-Jung Kao

An arc-submerged nanoparticle synthesis system (ASNSS) is proposed and developed for fabricating Ni/Ag nanocompound fluid. In the development process, the positive and negative electrodes in the system are Ni and Ag, respectively. Applied electrical energy then produces heating source by generating an adequate arc with a high temperature that can melt and vaporize the two electrodes. The nanocompound fluid that is generated by the synthesis system is analyzed by morphological analysis, Zeta potential analysis, heat conductivity analysis, magnetic characteristic analysis, and UV-Vis absorption spectra analysis. Experimental results show that increasing the concentration of added particles and the higher temperature can be helpful to the enhancement of thermal conductivity. The Ni/Ag nanofluid not only preserves the magnetic character of the nickel and the ability of silver to absorb visible light but also enhances the thermal conductivity. The absorption occurs at 406 nm wavelength (redshift from 396 nm to 406 nm), which means that, under the excitement of visible light range (400~700 nm), it can let more easy electrons jump to the conductivity zone from the valence electron zone.


Sign in / Sign up

Export Citation Format

Share Document