Analysis and control of active neutral-point-clamping three-level inverters under fault tolerant operation modes

Author(s):  
Zheng Wang ◽  
Bing Zhang ◽  
Yibo Wang ◽  
Yue Zhang ◽  
Ming Cheng
2021 ◽  
Author(s):  
Dmitry Moiseevich Olenchikov

Abstract Recently, more and more reservoir flow models are being extended to integrated ones to consider the influence of the surface network on the field development. A serious numerical problem is the handling of constraints in the form of inequalities. It is especially difficult in combination with optimization and automatic control of well and surface equipment. Traditional numerical methods solve the problem iteratively, choosing the operation modes for network elements. Sometimes solution may violate constraints or not be an optimal. The paper proposes a new flexible and relatively efficient method that allows to reliably handle constraints. The idea is to work with entire set of all possible operation modes according to constraints and control capabilities. Let's call this set an operation modes domain (OMD). The problem is solved in two stages. On the first stage (direct course) the OMD are calculated for all network elements from wells to terminal. Constraints are handled by narrowing the OMD. On the second stage (backward course) the optimal solution is chosen from OMD.


2021 ◽  
pp. 1-27
Author(s):  
Saddam Hocine Derrouaoui ◽  
Yasser Bouzid ◽  
Mohamed Guiatni ◽  
Islam Dib

Recently, reconfigurable drones have gained particular attention in the field of automation and flying robots. Unlike the conventional drones, they are characterized by a variable mechanical structure in flight, geometric adaptability, aerial reconfiguration, high number of actuators and control inputs, and variable mathematical model. In addition, they are exploited to flight in more cluttered environments, avoid collisions with obstacles, transport and grab objects, cross narrow and small spaces, decrease different aerial damages, optimize the consumed energy, and improve agility and maneuverability in flight. Moreover, these new drones are considered as a viable solution to provide them with specific and additional functionalities. They are a promising solution in the near future, since they allow increasing considerably the capabilities and performance of classical drones in terms of multi-functionalities, geometric adaptation, design characteristics, consumed energy, control, maneuverability, agility, efficiency, obstacles avoidance, and fault tolerant control. This paper explores very interesting and recent research works, which include the classification, the main characteristics, the various applications, and the existing designs of this particular class of drones. Besides, an in-depth review of the applied control strategies will be presented. The links of the videos displaying the results of these researches will be also shown. A comparative study between the different types of flying vehicles will be established. Finally, several new challenges and future directions for reconfigurable drones will be discussed.


2016 ◽  
Vol 9 (12) ◽  
pp. 2350-2359 ◽  
Author(s):  
Hafedh Ben Abdelghani ◽  
Afef Bennani Ben Abdelghani ◽  
Frédéric Richardeau ◽  
Jean‐Marc Blaquière ◽  
Franck Mosser ◽  
...  
Keyword(s):  

2015 ◽  
Vol 1 (1) ◽  
Author(s):  
David J Reilly

AbstractSpanning a range of hardware platforms, the building-blocks of quantum processors are today sufficiently advanced to begin work on scaling-up these systems into complex quantum machines. A key subsystem of all quantum machinery is the interface between the isolated qubits that encode quantum information and the classical control and readout technology needed to operate them. As few-qubit devices are combined to construct larger, fault-tolerant quantum systems in the near future, the quantum-classical interface will pose new challenges that increasingly require approaches from the engineering disciplines in combination with continued fundamental advances in physics, materials and mathematics. This review describes the subsystems comprising the quantum-classical interface from the viewpoint of an engineer, experimental physicist or student wanting to enter the field of solid-state quantum information technology. The fundamental signalling operations of readout and control are reviewed for a variety of qubit platforms, including spin systems, superconducting implementations and future devices based on topological degrees-of-freedom. New engineering opportunities for technology development at the boundary between qubits and their control hardware are identified, transversing electronics to cryogenics.


2019 ◽  
Vol 12 (4) ◽  
pp. 810-816 ◽  
Author(s):  
Haoyang Li ◽  
Yuanbo Guo ◽  
Jinhui Xia ◽  
Ze Li ◽  
Xiaohua Zhang

Sign in / Sign up

Export Citation Format

Share Document