Synchronous Filter Based Harmonic Suppression for PMSM in Overmodulation Region

Author(s):  
Bowen Wang ◽  
Yashan Hu ◽  
Kan Liu
Keyword(s):  
2011 ◽  
Vol E94-C (7) ◽  
pp. 1237-1239
Author(s):  
Chia-Hao KU ◽  
Hsien-Wen LIU ◽  
Yu-Shu LIN ◽  
Kuei-Yi LIN ◽  
Pao-Jen WANG

2015 ◽  
Vol 9 (1) ◽  
pp. 591-599
Author(s):  
Ma Wenchuan ◽  
Zhitong Li ◽  
Chen Daochang ◽  
Qi Jiaming ◽  
Zhou Qiang ◽  
...  

For resolving the problem that power filter cannot work normally because TCR (thyristor controlled reactor) generates extra third harmonic current under asymmetrical voltage, the paper proposes the estimation method of current capacity that TCR generates extra third harmonic current under asymmetrical voltage. Considering extra third harmonic current under asymmetrical voltage, Optimum method based on genetic algorithm is used to design the parameters of power filter. With reactive power compensation and harmonic suppression project of a steel mill as example, the proposed method is simulated by Matlab. Simulation results show optimized power filter can eliminate extra third harmonic current effects under asymmetrical voltage, meet the requirement of reactive power compensation, reduce harmonics current that load injects into system, and guarantee the power filter safe operation under asymmetrical voltage.


2020 ◽  
Vol 30 (12) ◽  
pp. 1177-1180
Author(s):  
Zhongqi He ◽  
Hang Lin ◽  
Huacheng Zhu ◽  
Changjun Liu

2006 ◽  
Vol 49 (1) ◽  
pp. 103-105 ◽  
Author(s):  
M. K. Mandal ◽  
P. Mondal ◽  
S. Sanyal ◽  
A. Chakrabarty

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Behdad Jamshidi ◽  
Saeed Roshani ◽  
Jakub Talla ◽  
Sobhan Roshani ◽  
Zdenek Peroutka

AbstractIn the design of a microstrip power divider, there are some important factors, including harmonic suppression, insertion loss, and size reduction, which affect the quality of the final product. Thus improving each of these factors contributes to a more efficient design. In this respect, a hybrid technique to reduce the size and improve the performance of a Wilkinson power divider (WPD) is introduced in this paper. The proposed method includes a typical series LC circuit, a miniaturizing inductor, and two transmission lines, which make an LC branch. Accordingly, two quarter-wavelength branches of the conventional WPD are replaced by two proposed LC branches. Not only does this modification lead to a 100% size reduction, an infinite number of harmonics suppression, and high-frequency selectivity theoretically, but it also results in a noticeable performance improvement practically compared to using quarter-wavelength branches in the conventional microstrip power dividers. The main important contributions of this technique are extreme size reduction and harmonic suppression for the implementation of a filtering power divider (FPD). Furthermore, by tuning the LC circuit, the arbitrary numbers of unwanted harmonics are blocked while the operating frequency, the stopband bandwidth, and the operating bandwidth are chosen optionally. The experimental result verifies the theoretical and simulated results of the proposed technique and demonstrates its potential for improving the performance and reducing the size of other similar microstrip components.


Sign in / Sign up

Export Citation Format

Share Document