Induced fault current simulation of a three phase miniature circuit breaker: Simulation of fault and comparison to tripping curve of the MCB

Author(s):  
Conecici-Lucian Madalin ◽  
Munteanu Calin ◽  
Purcar Ioan Marius
Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1204
Author(s):  
Gul Ahmad Ludin ◽  
Mohammad Amin Amin ◽  
Hidehito Matayoshi ◽  
Shriram S. Rangarajan ◽  
Ashraf M. Hemeida ◽  
...  

This paper proposes a new and surge-less solid-state direct current (DC) circuit breaker in a high-voltage direct current (HVDC) transmission system to clear the short-circuit fault. The main purpose is the fast interruption and surge-voltage and over-current suppression capability analysis of the breaker during the fault. The breaker is equipped with series insulated-gate bipolar transistor (IGBT) switches to mitigate the stress of high voltage on the switches. Instead of conventional metal oxide varistor (MOV), the resistance–capacitance freewheeling diodes branch is used to bypass the high fault current and repress the over-voltage across the circuit breaker. The topology and different operation modes of the proposed breaker are discussed. In addition, to verify the effectiveness of the proposed circuit breaker, it is compared with two other types of surge-less solid-state DC circuit breakers in terms of surge-voltage and over-current suppression. For this purpose, MATLAB Simulink simulation software is used. The system is designed for the transmission of 20 MW power over a 120 km distance where the voltage of the transmission line is 220 kV. The results show that the fault current is interrupted in a very short time and the surge-voltage and over-current across the proposed breaker are considerably reduced compared to other topologies.


Author(s):  
Shimin Xue ◽  
Baibing Liu ◽  
Shouxiang Wang ◽  
Xiao Chen ◽  
Xiaoshuai Zhu ◽  
...  

2014 ◽  
Vol 556-562 ◽  
pp. 1959-1963
Author(s):  
Si Ming Wei ◽  
Yi Gong Zhang ◽  
Huan Liu ◽  
Zhi Qiang Dai ◽  
Xiao Du

It is great significance for development of MTDC (Multi-terminal HVDC) to build DC transmission and distribution grids. However, the relatively low impedance in DC grids makes the fault penetration much faster and deeper .Consequently, fast and reliable DC circuit breaker is needed to isolate faults. Breaking time and other parameters are important for a breaker to achieve its goals. This paper presents a DC circuit breaker with a current-limiting inductance and gets the rising and falling characteristics of fault current. Based on the characteristics, a design method of breaking time sequence will be given, as well as the calculation of current-limiting inductance and the selection principles of arresters. A 10kV DC distribution grid is modeled and simulated by PSCAD/EMTDC to verify that the method can meet the requirements of breaking fault current quickly and reliably.


2016 ◽  
Vol 11 (1) ◽  
pp. 13-20
Author(s):  
Georgiy Egamnazarov

Abstract Given the fact that the installing costs of an optical ground wire on overhead lines directly depend on its cross-section, which in turn depends on the level of fault current it should withstand, in order to reduce these current values in the optical ground wire, I suggested performing its isolated descents from the end towers of the line with its transition to an optical cable. The research was carried out on the example of a 500 kV overhead line in the National Electric Power Grid. The Method of Symmetrical Components for calculating asymmetrical fault currents was not used; therefore, calculations were carried out on the base of presenting the line as a multi-wire system for the considered case as a five-wire system (optical ground wire, steel ground wire, and three phase wires). Such approach allows taking into account the initial asymmetry of the line parameters and modeling any kind of asymmetrical faults. The analyses of calculated results were performed. The conclusive evidence that the optical ground wire isolated descents from the end towers of the line give the possibility of reducing the level of maximal fault current distribution values in it and therefore its cross section, is presented.


2021 ◽  
Vol 194 ◽  
pp. 107058
Author(s):  
Yun Geng ◽  
Jinlong Dong ◽  
Xinggui Chen ◽  
Luyang Zhang ◽  
Jing Yan ◽  
...  

2017 ◽  
Vol 4 (3) ◽  
pp. 234-240 ◽  
Author(s):  
Y. Guo ◽  
H. Zhang ◽  
Y. Yao ◽  
Q. Zhang ◽  
J. D. Yan

A high voltage gas blast circuit breaker relies on the high speed gas flow in a nozzle to remove the energy due to Ohmic heating at high current and to provide strong arc cooling during the current zero period to interrupt a fault current. The physical mechanisms that are responsible for the hugely different arc cooling capabilities of two gases (SF<sub>6</sub> and air) are studied in the present work and important gas material properties controlling the cooling strength identified.


Sign in / Sign up

Export Citation Format

Share Document