Study of polyphase structure made easy using GNU Radio

Author(s):  
K. R. Jijeesh ◽  
V. Anupama ◽  
Chakravarthula Raghavachari ◽  
R. Gandhiraj
Author(s):  
Mathieu Xhonneux ◽  
Joachim Tapparel ◽  
Orion Afisiadis ◽  
Alexios Balatsoukas-Stimming ◽  
Andreas Burg
Keyword(s):  

2021 ◽  
pp. 43-58
Author(s):  
S. S. Yudachev ◽  
P. A. Monakhov ◽  
N. A. Gordienko

This article describes an attempt to create open source LabVIEW software, equivalent to data collection and control software. The proposed solution uses GNU Radio, OpenCV, Scilab, Xcos, and Comedi in Linux. GNU Radio provides a user-friendly graphical interface. Also, GNU Radio is a software-defined radio that conducts experiments in practice using software rather than the usual hardware implementation. Blocks for data propagation, code deletion with and without code tracking are created using the zero correlation zone code (ZCZ, a combination of ternary codes equal to 1, 0, and –1, which is specified in the program). Unlike MATLAB Simulink, GNU Radio is open source, i. e. free, and the concepts can be easily accessed by ordinary people without much programming experience using pre-written blocks. Calculations can be performed using OpenCV or Scilab and Xcos. Xcos is an application that is part of the Scilab mathematical modeling system, and it provides developers with the ability to design systems in the field of mechanics, hydraulics and electronics, as well as queuing systems. Xcos is a graphical interactive environment based on block modeling. The application is designed to solve problems of dynamic and situational modeling of systems, processes, devices, as well as testing and analyzing these systems. In this case, the modeled object (a system, device or process) is represented graphically by its functional parametric block diagram, which includes blocks of system elements and connections between them. The device drivers listed in Comedi are used for real-time data access. We also present an improved PyGTK-based graphical user interface for GNU Radio. English version of the article is available at URL: https://panor.ru/articles/industry-40-digital-technology-for-data-collection-and-management/65216.html


2021 ◽  
Author(s):  
◽  
Yu Ren

<p>Spectrum today is regulated based on fixed licensees. In the past radio operators have been allocated a frequency band for exclusive use. This has become problem for new users and the modern explosion in wireless services that, having arrived late find there is a scarcity in the remaining available spectrum. Cognitive radio (CR) presents a solution. CRs combine intelligence, spectrum sensing and software reconfigurable radio capabilities. This allows them to opportunistically transmit among several licensed bands for seamless communications, switching to another channel when a licensee is sensed in the original band without causing interference. Enabling this is an intelligent dynamic channel selection strategy capable of finding the best quality channel to transmit on that suffers from the least licensee interruption. This thesis evaluates a Q-learning channel selection scheme using an experimental approach. A cognitive radio deploying the scheme is implemented on GNU Radio and its performance is measured among channels with different utilizations in terms of its packet transmission success rate, goodput and interference caused. We derive similar analytical expressions in the general case of large-scale networks. Our results show that using the Q-learning scheme for channel selection significantly improves the goodput and packet transmission success rate of the system.</p>


Sign in / Sign up

Export Citation Format

Share Document