Classification of cervical cancer using Deep Learning Algorithm

Author(s):  
Anurag Tripathi ◽  
Aditya Arora ◽  
Anupama Bhan
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ye Rang Park ◽  
Young Jae Kim ◽  
Woong Ju ◽  
Kyehyun Nam ◽  
Soonyung Kim ◽  
...  

AbstractCervical cancer is the second most common cancer in women worldwide with a mortality rate of 60%. Cervical cancer begins with no overt signs and has a long latent period, making early detection through regular checkups vitally immportant. In this study, we compare the performance of two different models, machine learning and deep learning, for the purpose of identifying signs of cervical cancer using cervicography images. Using the deep learning model ResNet-50 and the machine learning models XGB, SVM, and RF, we classified 4119 Cervicography images as positive or negative for cervical cancer using square images in which the vaginal wall regions were removed. The machine learning models extracted 10 major features from a total of 300 features. All tests were validated by fivefold cross-validation and receiver operating characteristics (ROC) analysis yielded the following AUCs: ResNet-50 0.97(CI 95% 0.949–0.976), XGB 0.82(CI 95% 0.797–0.851), SVM 0.84(CI 95% 0.801–0.854), RF 0.79(CI 95% 0.804–0.856). The ResNet-50 model showed a 0.15 point improvement (p < 0.05) over the average (0.82) of the three machine learning methods. Our data suggest that the ResNet-50 deep learning algorithm could offer greater performance than current machine learning models for the purpose of identifying cervical cancer using cervicography images.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1615
Author(s):  
Ines P. Nearchou ◽  
Hideki Ueno ◽  
Yoshiki Kajiwara ◽  
Kate Lillard ◽  
Satsuki Mochizuki ◽  
...  

The categorisation of desmoplastic reaction (DR) present at the colorectal cancer (CRC) invasive front into mature, intermediate or immature type has been previously shown to have high prognostic significance. However, the lack of an objective and reproducible assessment methodology for the assessment of DR has been a major hurdle to its clinical translation. In this study, a deep learning algorithm was trained to automatically classify immature DR on haematoxylin and eosin digitised slides of stage II and III CRC cases (n = 41). When assessing the classifier’s performance on a test set of patient samples (n = 40), a Dice score of 0.87 for the segmentation of myxoid stroma was reported. The classifier was then applied to the full cohort of 528 stage II and III CRC cases, which was then divided into a training (n = 396) and a test set (n = 132). Automatically classed DR was shown to have superior prognostic significance over the manually classed DR in both the training and test cohorts. The findings demonstrated that deep learning algorithms could be applied to assist pathologists in the detection and classification of DR in CRC in an objective, standardised and reproducible manner.


2021 ◽  
Vol 237 ◽  
pp. 106718
Author(s):  
Sepideh Alsadat Azimi ◽  
Hossein Afarideh ◽  
Jong-Seo Chai ◽  
Martin Kalinowski ◽  
Abdelhakim Gheddou ◽  
...  

Author(s):  
Konstantinos Exarchos ◽  
Dimitrios Potonos ◽  
Agapi Aggelopoulou ◽  
Agni Sioutkou ◽  
Konstantinos Kostikas

2021 ◽  
Author(s):  
Noreen Anwar ◽  
Zhen Shen ◽  
Qinglai Wei ◽  
Gang Xiong ◽  
Peijun Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document