Deep Learning Based Binary Classification for Alzheimer’s Disease Detection using Brain MRI Images

Author(s):  
Emtiaz Hussain ◽  
Mahmudul Hasan ◽  
Syed Zafrul Hassan ◽  
Tanzina Hassan Azmi ◽  
Md Anisur Rahman ◽  
...  
2021 ◽  
Vol 19 (11) ◽  
pp. 126-140
Author(s):  
Zahraa S. Aaraji ◽  
Hawraa H. Abbas

Neuroimaging data analysis has attracted a great deal of attention with respect to the accurate diagnosis of Alzheimer’s disease (AD). Magnetic Resonance Imaging (MRI) scanners have thus been commonly used to study AD-related brain structural variations, providing images that demonstrate both morphometric and anatomical changes in the human brain. Deep learning algorithms have already been effectively exploited in other medical image processing applications to identify features and recognise patterns for many diseases that affect the brain and other organs; this paper extends on this to describe a novel computer aided software pipeline for the classification and early diagnosis of AD. The proposed method uses two types of three-dimensional Convolutional Neural Networks (3D CNN) to facilitate brain MRI data analysis and automatic feature extraction and classification, so that pre-processing and post-processing are utilised to normalise the MRI data and facilitate pattern recognition. The experimental results show that the proposed approach achieves 97.5%, 82.5%, and 83.75% accuracy in terms of binary classification AD vs. cognitively normal (CN), CN vs. mild cognitive impairment (MCI) and MCI vs. AD, respectively, as well as 85% accuracy for multi class-classification, based on publicly available data sets from the Alzheimer’s disease Neuroimaging Initiative (ADNI).


2020 ◽  
Vol 13 (4) ◽  
pp. 495-505 ◽  
Author(s):  
Sanjiban Sekhar Roy ◽  
Raghav Sikaria ◽  
Aarti Susan

2020 ◽  
Author(s):  
Bin Lu ◽  
Hui-Xian Li ◽  
Zhi-Kai Chang ◽  
Le Li ◽  
Ning-Xuan Chen ◽  
...  

AbstractBeyond detecting brain damage or tumors, little success has been attained on identifying individual differences and brain disorders with magnetic resonance imaging (MRI). Here, we sought to build industrial-grade brain imaging-based classifiers to infer two types of such inter-individual differences: sex and Alzheimer’s disease (AD), using deep learning/transfer learning on big data. We pooled brain structural data from 217 sites/scanners to constitute the largest brain MRI sample to date (85,721 samples from 50,876 participants), and applied a state-of-the-art deep convolutional neural network, Inception-ResNet-V2, to build a sex classifier with high generalizability. In cross-dataset-validation, the sex classification model was able to classify the sex of any participant with brain structural imaging data from any scanner with 94.9% accuracy. We then applied transfer learning based on this model to objectively diagnose AD, achieving 88.4% accuracy in cross-site-validation on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and 91.2% / 86.1% accuracy for a direct test on two unseen independent datasets (AIBL / OASIS). Directly testing this AD classifier on brain images of unseen mild cognitive impairment (MCI) patients, the model correctly predicted 63.2% who eventually converted into AD, versus predicting 22.1% as AD who did not convert into AD during follow-up. Predicted scores of the AD classifier correlated significantly with illness severity. By contrast, the transfer learning framework was unable to achieve practical accuracy for psychiatric disorders. To improve interpretability of the deep learning models, occlusion tests revealed that hypothalamus, superior vermis, thalamus, amygdala and limbic system areas were critical for predicting sex; hippocampus, parahippocampal gyrus, putamen and insula played key roles in predicting AD. Our trained model, code, preprocessed data and an online prediction website have been openly-shared to advance the clinical utility of brain imaging.


2021 ◽  
Author(s):  
Nur Amirah Abd Hamid ◽  
Mohd Ibrahim Shapiai ◽  
Uzma Batool ◽  
Ranjit Singh Sarban Singh ◽  
Muhamad Kamal Mohammed Amin ◽  
...  

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease that requires attentive medical evaluation. Therefore, diagnosing of AD accurately is crucial to provide the patients with appropriate treatment to slow down the progression of AD as well to facilitate the treatment interventions. To date, deep learning by means of convolutional neural networks (CNNs) has been widely used in diagnosing of AD. There are several well-established CNNs architectures that have been used in the image classification domain for magnetic resonance imaging (MRI) images analysis such as LeNet-5, Inception-V4, VGG-16 and Residual Network. However, these existing deep learning-based methods have lack of ability to be spatial invariance to the input data, due to overlooking some salient local features of the region of interest (ROI) (i.e., hippocampal). In medical image analysis, local features of MRI images are hard to exploit due to the small pixel size of ROI. On the other hand, CNNs requires large dataset sample to perform well, but we have limited number of MRI images to train, thus, leading to overfitting. Therefore, we propose a novel deep learning-based model without pre-processing techniques by incorporating attention mechanism and global average pooling (GAP) layer to VGG-16 architecture to capture the salient features of the MRI image for subtle discriminating of AD and normal control (NC). Also, we utilize transfer learning to surpass the overfitting issue. Experiment is performed on data collected from Open Access Series of Imaging Studies (OASIS) database. The accuracy performance of binary classification (AD vs NC) using proposed method significantly outperforms the existing methods, 12-layered CNNs (trained from scratch) and Inception-V4 (transfer learning) by increasing 1.93% and 3.43% of the accuracy. In conclusion, Attention-GAP model capable of improving and achieving notable classification accuracy in diagnosing AD.


Sign in / Sign up

Export Citation Format

Share Document