Joint Load Transfer Efficiency of Rigid Pavement Considering Dynamic Effects under a Single Moving Load

Author(s):  
Xinhua Yu ◽  
Xiaochun Wu
2014 ◽  
Vol 1030-1032 ◽  
pp. 1108-1115
Author(s):  
Guo Xi Liang ◽  
Zhi Gao Liao ◽  
Bo Li ◽  
Liang Zhou ◽  
Er Hao Su ◽  
...  

Joint load transfer ability is the key part of the analysis of the rigid pavement structure. This paper is focused on the load transfer efficiency at joints of monolithic track-bed under new city tramcar loading. Based on the general finite element analysis software ABAQUS, the relationship between the modulus of virtual materials in virtual material layer method and joint load transfer ability is analyzed. Meanwhile, bending stress and deflection for monolithic track-bed structure on edge loading case are calculated under different thickness of the pavement structure.


2020 ◽  
Vol 5 (1) ◽  
pp. 7
Author(s):  
Pawan Deep ◽  
Mathias B. Andersen ◽  
Nick Thom ◽  
Davide Lo Presti

The jointed rigid pavement is currently evaluated by the Falling weight deflectometer which is rather slow for the testing of the jointed pavements. Continuous nondestructive evaluation of rigid pavements with a rolling wheel deflectometer can be used to measure the load transfer and is investigated. Load transfer is an important indicator of the rigid pavement’s condition and this is the primary factor which is studied. Continuous data from experimental measurements across a joint allows for the determination of not only the load transfer efficiency provided parameters characterizing the pavement is known. A three-dimensional semi-analytical model was implemented for simulating the pavement response near a joint and used for interpretation and verification of the experimental data. Results show that this development is promising for the use of a rolling wheel deflectometer for rapid evaluation of joints.


Author(s):  
Neeraj Buch ◽  
Dan G. Zollinger

The results of an in-depth study of factors that affect dowel looseness in jointed concrete pavements are presented. The laboratory investigation revealed the influence of aggregate type (in relation to oxide content), aggregate texture and shape, bearing stress (dowel diameter and crack width), load magnitude, and number of load cycles on the magnitude of dowel looseness and the subsequent loss in load transfer efficiency across saw-cut joints. A discussion is included on the development of an empirical-mechanistic dowel looseness prediction model based on the experimental results. Results of the sensitivity analysis of the dowel looseness prediction model (using laboratory data) are also presented. An associated scope of this research was to develop a relationship between dowel looseness and loss of load transfer efficiency. The sequential use of the dowel looseness prediction model and its relationship to load transfer efficiency allows the design engineer to predict load transfer characteristics of a joint, based on calculated (or measured) dowel looseness. The framework suggested to predict dowel looseness can then be incorporated into a fault prediction model for doweled joints.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Xiaolan Liu ◽  
Xianmin Zhang ◽  
Yadong Wang

The evaluation method of load transfer efficiency using falling weight deflectometer is unworkable in remote mountain areas and transportation difficult region. Therefore, a novation method of load transfer efficiency evaluation is proposed using the index of amplitude ratio. Finite element method is applied to study the influence of dowel bar parameters (diameter, length, spacing, and elastic modulus) and pavement structures parameters (thickness and modulus) on load transfer efficiency, frequency, and the ratio of amplitude. Results of finite element model show that the effects of dowel bar and pavement structure parameters on load transfer efficiency and the ratio of amplitude are similar. The load transfer efficiency, frequency, and the ratio of amplitude enhance with the increase of dowel bar diameter, length, and elastic modulus and the decrease of dowel bar spacing. The subgrade modulus has more significant influence on the load transfer efficiency, frequency, and the ratio of amplitude than other pavement parameters. Polynomial function method is utilized to established load transfer mode between deflection-based load transfer efficiency and the ratio of amplitude. The feasibility and reliability of new method is verified by static and dynamic load test. All results are helpful for the development of highway engineering and airport engineering.


Sign in / Sign up

Export Citation Format

Share Document