Multi-temporal remote sensing image registration based on multi-layer feature fusion of deep residual network

Author(s):  
Chen Ying ◽  
Liu Guoqing ◽  
Chen Hengshi
2021 ◽  
Vol 13 (24) ◽  
pp. 5128
Author(s):  
Xinyue Zhang ◽  
Chengcai Leng ◽  
Yameng Hong ◽  
Zhao Pei ◽  
Irene Cheng ◽  
...  

With rapid advancements in remote sensing image registration algorithms, comprehensive imaging applications are no longer limited to single-modal remote sensing images. Instead, multi-modal remote sensing (MMRS) image registration has become a research focus in recent years. However, considering multi-source, multi-temporal, and multi-spectrum input introduces significant nonlinear radiation differences in MMRS images for which researchers need to develop novel solutions. At present, comprehensive reviews and analyses of MMRS image registration methods are inadequate in related fields. Thus, this paper introduces three theoretical frameworks: namely, area-based, feature-based and deep learning-based methods. We present a brief review of traditional methods and focus on more advanced methods for MMRS image registration proposed in recent years. Our review or comprehensive analysis is intended to provide researchers in related fields with advanced understanding to achieve further breakthroughs and innovations.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 38544-38555 ◽  
Author(s):  
Zhuoqian Yang ◽  
Tingting Dan ◽  
Yang Yang

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1863
Author(s):  
Ying Chen ◽  
Qi Zhang ◽  
Wencheng Zhang ◽  
Lei Chen

Multi-temporal remote sensing image registration is a geometric symmetry process that involves matching a source image with a target image. To improve the accuracy and enhance the robustness of the algorithm, this study proposes an end-to-end registration network—a bidirectional symmetry network based on dual-field cyclic attention for multi-temporal remote sensing image registration, which mainly improves feature extraction and feature matching. (1) We propose a feature extraction framework combining an attention module and a pre-training model, which can accurately locate important areas in images and quickly extract features. Not only is the dual receptive field module designed to enhance attention in the spatial region, a loop structure is also used to improve the network model and improve overall accuracy. (2) Matching has not only directivity but also symmetry. We design a symmetric network of two-way matching to reduce the registration deviation caused by one-way matching and use a Pearson correlation method to improve the cross-correlation matching and enhance the robustness of the matching relation. In contrast with two traditional methods and three deep learning-based algorithms, the proposed approach works well under five indicators in three public multi-temporal datasets. Notably, in the case of the Aerial Image Dataset, the accuracy of the proposed method is improved by 39.8% compared with the Two-stream Ensemble method under a PCK (Percentage of Correct Keypoints) index of 0.05. When the PCK index is 0.03, accuracy increases by 46.8%, and increases by 18.7% under a PCK index of 0.01. Additionally, when adding the innovation points in feature extraction into the basic network CNNGeo (Convolutional Neural Network Architecture for Geometric Matching), accuracy is increased by 36.7% under 0.05 PCK, 18.2% under 0.03 PCK, and 8.4% under 0.01 PCK. Meanwhile, by adding the innovation points in feature matching into CNNGeo, accuracy is improved by 16.4% under 0.05 PCK, 9.1% under 0.03 PCK, and 5.2% under 0.01 PCK. In most cases, this paper reports high registration accuracy and efficiency for multi-temporal remote sensing image registration.


Sign in / Sign up

Export Citation Format

Share Document