scholarly journals Multimodal Remote Sensing Image Registration Methods and Advancements: A Survey

2021 ◽  
Vol 13 (24) ◽  
pp. 5128
Author(s):  
Xinyue Zhang ◽  
Chengcai Leng ◽  
Yameng Hong ◽  
Zhao Pei ◽  
Irene Cheng ◽  
...  

With rapid advancements in remote sensing image registration algorithms, comprehensive imaging applications are no longer limited to single-modal remote sensing images. Instead, multi-modal remote sensing (MMRS) image registration has become a research focus in recent years. However, considering multi-source, multi-temporal, and multi-spectrum input introduces significant nonlinear radiation differences in MMRS images for which researchers need to develop novel solutions. At present, comprehensive reviews and analyses of MMRS image registration methods are inadequate in related fields. Thus, this paper introduces three theoretical frameworks: namely, area-based, feature-based and deep learning-based methods. We present a brief review of traditional methods and focus on more advanced methods for MMRS image registration proposed in recent years. Our review or comprehensive analysis is intended to provide researchers in related fields with advanced understanding to achieve further breakthroughs and innovations.

2021 ◽  
Vol 13 (9) ◽  
pp. 1657
Author(s):  
Junyan Lu ◽  
Hongguang Jia ◽  
Tie Li ◽  
Zhuqiang Li ◽  
Jingyu Ma ◽  
...  

Feature-based remote sensing image registration methods have achieved great accomplishments. However, they have faced some limitations of applicability, automation, accuracy, efficiency, and robustness for large high-resolution remote sensing image registration. To address the above issues, we propose a novel instance segmentation based registration framework specifically for large-sized high-resolution remote sensing images. First, we design an instance segmentation model based on a convolutional neural network (CNN), which can efficiently extract fine-grained instances as the deep features for local area matching. Then, a feature-based method combined with the instance segmentation results is adopted to acquire more accurate local feature matching. Finally, multi-constraints based on the instance segmentation results are introduced to work on the outlier removal. In the experiments of high-resolution remote sensing image registration, the proposal effectively copes with the circumstance of the sensed image with poor positioning accuracy. In addition, the method achieves superior accuracy and competitive robustness compared with state-of-the-art feature-based methods, while being rather efficient.


2018 ◽  
Vol 10 (6) ◽  
pp. 964 ◽  
Author(s):  
Zhenfeng Shao ◽  
Ke Yang ◽  
Weixun Zhou

Benchmark datasets are essential for developing and evaluating remote sensing image retrieval (RSIR) approaches. However, most of the existing datasets are single-labeled, with each image in these datasets being annotated by a single label representing the most significant semantic content of the image. This is sufficient for simple problems, such as distinguishing between a building and a beach, but multiple labels and sometimes even dense (pixel) labels are required for more complex problems, such as RSIR and semantic segmentation.We therefore extended the existing multi-labeled dataset collected for multi-label RSIR and presented a dense labeling remote sensing dataset termed "DLRSD". DLRSD contained a total of 17 classes, and the pixels of each image were assigned with 17 pre-defined labels. We used DLRSD to evaluate the performance of RSIR methods ranging from traditional handcrafted feature-based methods to deep learning-based ones. More specifically, we evaluated the performances of RSIR methods from both single-label and multi-label perspectives. These results demonstrated the advantages of multiple labels over single labels for interpreting complex remote sensing images. DLRSD provided the literature a benchmark for RSIR and other pixel-based problems such as semantic segmentation.


2021 ◽  
Vol 13 (17) ◽  
pp. 3425
Author(s):  
Xin Zhao ◽  
Hui Li ◽  
Ping Wang ◽  
Linhai Jing

Accurate registration for multisource high-resolution remote sensing images is an essential step for various remote sensing applications. Due to the complexity of the feature and texture information of high-resolution remote sensing images, especially for images covering earthquake disasters, feature-based image registration methods need a more helpful feature descriptor to improve the accuracy. However, traditional image registration methods that only use local features at low levels have difficulty representing the features of the matching points. To improve the accuracy of matching features for multisource high-resolution remote sensing images, an image registration method based on a deep residual network (ResNet) and scale-invariant feature transform (SIFT) was proposed. It used the fusion of SIFT features and ResNet features on the basis of the traditional algorithm to achieve image registration. The proposed method consists of two parts: model construction and training and image registration using a combination of SIFT and ResNet34 features. First, a registration sample set constructed from high-resolution satellite remote sensing images was used to fine-tune the network to obtain the ResNet model. Then, for the image to be registered, the Shi_Tomas algorithm and the combination of SIFT and ResNet features were used for feature extraction to complete the image registration. Considering the difference in image sizes and scenes, five pairs of images were used to conduct experiments to verify the effectiveness of the method in different practical applications. The experimental results showed that the proposed method can achieve higher accuracies and more tie points than traditional feature-based methods.


Author(s):  
X. J. Shan ◽  
P. Tang

Given the influences of illumination, imaging angle, and geometric distortion, among others, false matching points still occur in all image registration algorithms. Therefore, false matching points detection is an important step in remote sensing image registration. Random Sample Consensus (RANSAC) is typically used to detect false matching points. However, RANSAC method cannot detect all false matching points in some remote sensing images. Therefore, a robust false matching points detection method based on Knearest- neighbour (K-NN) graph (KGD) is proposed in this method to obtain robust and high accuracy result. The KGD method starts with the construction of the K-NN graph in one image. K-NN graph can be first generated for each matching points and its K nearest matching points. Local transformation model for each matching point is then obtained by using its K nearest matching points. The error of each matching point is computed by using its transformation model. Last, L matching points with largest error are identified false matching points and removed. This process is iterative until all errors are smaller than the given threshold. In addition, KGD method can be used in combination with other methods, such as RANSAC. Several remote sensing images with different resolutions and terrains are used in the experiment. We evaluate the performance of KGD method, RANSAC + KGD method, RANSAC, and Graph Transformation Matching (GTM). The experimental results demonstrate the superior performance of the KGD and RANSAC + KGD methods.


2013 ◽  
Vol 333-335 ◽  
pp. 1475-1478
Author(s):  
Zhi Hong Liu ◽  
Xing Ke Yang ◽  
Qian Zhu ◽  
Hu Jun He ◽  
San You Cheng

Analyzing the significance of macroscopically dynamic monitoring of newly increased construction land, and considering the influence of various factors, this paper selects central Shaanxi Plain in Northwestern region for a typical experimental zone, setting up knowledge base of remote sensing images interpretation, using multi-temporal remote sensing images, carrying through interactive interpretation of change patterns spots of newly increased construction land and field validation. Results of middle resolution remote sensing image interpretation are compared, analyzed. Additionally, interpretation accuracy of different scales are studied, especially between middle resolution 10 ms ALOS remote sensing image and panchromatic high resolution remote sensing, on newly increased construction land in northwestern plains, to find out the remote sensing images which can not only quickly extract new construction land change patterns spots, but also can satisfy precision requirement of the business.


Author(s):  
R. Feng ◽  
X. Li ◽  
H. Shen

<p><strong>Abstract.</strong> Mountainous remote sensing images registration is more complicated than in other areas as geometric distortion caused by topographic relief, which could not be precisely achieved via constructing local mapping functions in the feature-based framework. Optical flow algorithm estimating motion of consecutive frames in computer vision pixel by pixel is introduced for mountainous remote sensing images registration. However, it is sensitive to land cover changes that are inevitable for remote sensing image, resulting in incorrect displacement. To address this problem, we proposed an improved optical flow estimation concentrated on post-processing, namely displacement modification. First of all, the Laplacian of Gaussian (LoG) algorithm is employed to detect the abnormal value in color map of displacement. Then, the abnormal displacement is recalculated in the interpolation surface constructed by the rest accurate displacements. Following the successful coordinate transformation and resampling, the registration outcome is generated. Experiments demonstrated that the proposed method is insensitive in changeable region of mountainous remote sensing image, generating precise registration, outperforming the other local transformation model estimation methods in both visual judgment and quantitative evaluation.</p>


2020 ◽  
Vol 12 (18) ◽  
pp. 2937
Author(s):  
Song Cui ◽  
Miaozhong Xu ◽  
Ailong Ma ◽  
Yanfei Zhong

The nonlinear radiation distortions (NRD) among multimodal remote sensing images bring enormous challenges to image registration. The traditional feature-based registration methods commonly use the image intensity or gradient information to detect and describe the features that are sensitive to NRD. However, the nonlinear mapping of the corresponding features of the multimodal images often results in failure of the feature matching, as well as the image registration. In this paper, a modality-free multimodal remote sensing image registration method (SRIFT) is proposed for the registration of multimodal remote sensing images, which is invariant to scale, radiation, and rotation. In SRIFT, the nonlinear diffusion scale (NDS) space is first established to construct a multi-scale space. A local orientation and scale phase congruency (LOSPC) algorithm are then used so that the features of the images with NRD are mapped to establish a one-to-one correspondence, to obtain sufficiently stable key points. In the feature description stage, a rotation-invariant coordinate (RIC) system is adopted to build a descriptor, without requiring estimation of the main direction. The experiments undertaken in this study included one set of simulated data experiments and nine groups of experiments with different types of real multimodal remote sensing images with rotation and scale differences (including synthetic aperture radar (SAR)/optical, digital surface model (DSM)/optical, light detection and ranging (LiDAR) intensity/optical, near-infrared (NIR)/optical, short-wave infrared (SWIR)/optical, classification/optical, and map/optical image pairs), to test the proposed algorithm from both quantitative and qualitative aspects. The experimental results showed that the proposed method has strong robustness to NRD, being invariant to scale, radiation, and rotation, and the achieved registration precision was better than that of the state-of-the-art methods.


2019 ◽  
Vol 11 (12) ◽  
pp. 1418
Author(s):  
Zhaohui Zheng ◽  
Hong Zheng ◽  
Yong Ma ◽  
Fan Fan ◽  
Jianping Ju ◽  
...  

In feature-based image matching, implementing a fast and ultra-robust feature matching technique is a challenging task. To solve the problems that the traditional feature matching algorithm suffers from, such as long running time and low registration accuracy, an algorithm called feedback unilateral grid-based clustering (FUGC) is presented which is able to improve computation efficiency, accuracy and robustness of feature-based image matching while applying it to remote sensing image registration. First, the image is divided by using unilateral grids and then fast coarse screening of the initial matching feature points through local grid clustering is performed to eliminate a great deal of mismatches in milliseconds. To ensure that true matches are not erroneously screened, a local linear transformation is designed to take feedback verification further, thereby performing fine screening between true matching points deleted erroneously and undeleted false positives in and around this area. This strategy can not only extract high-accuracy matching from coarse baseline matching with low accuracy, but also preserves the true matching points to the greatest extent. The experimental results demonstrate the strong robustness of the FUGC algorithm on various real-world remote sensing images. The FUGC algorithm outperforms current state-of-the-art methods and meets the real-time requirement.


Sign in / Sign up

Export Citation Format

Share Document