Comparison of LQR and PSO-based state feedback controller for tracking control of a flexible link manipulator

Author(s):  
Mahmud Iwan Solihin ◽  
Wahyudi ◽  
Ari Legowo ◽  
Rini Akmeliawati
2020 ◽  
Vol 12 (7) ◽  
pp. 168781402092265
Author(s):  
Xiao Yu ◽  
Fucheng Liao

In this article, the observer-based preview tracking control problem is investigated for a class of discrete-time Lipschitz nonlinear systems. To convert the observer-based trajectory tracking problem into a regulation problem, the classical difference technique is used to construct an augmented error system containing tracking error signal and previewable reference knowledge. Then, a state feedback controller with specific structures is taken into consideration. Sufficient design condition is established, based on the Lyapunov function approach, to guarantee the asymptotic stability of the closed-loop system. By means of some special mathematical derivations, the bilinear matrix inequality condition is successfully transformed into a tractable linear matrix inequality. Meanwhile, the gains of both observer and tracking controller can be computed simultaneously only in one step. As for the original system, the developed tracking control law is composed of an integrator, an observer-based state feedback controller, and a preview action term related to the reference signal. Finally, two numerical examples are provided to demonstrate the effectiveness of the theoretical method.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Firas Turki ◽  
Hassène Gritli ◽  
Safya Belghith

This paper proposes a state-feedback controller using the linear matrix inequality (LMI) approach for the robust position control of a 1-DoF, periodically forced, impact mechanical oscillator subject to asymmetric two-sided rigid end-stops. The periodic forcing input is considered as a persistent external disturbance. The motion of the impacting oscillator is modeled by an impulsive hybrid dynamics. Thus, the control problem of the impact oscillator is recast as a problem of the robust control of such disturbed impulsive hybrid system. To synthesize stability conditions, we introduce the S-procedure and the Finsler lemmas by only considering the region within which the state evolves. We show that the stability conditions are first expressed in terms of bilinear matrix inequalities (BMIs). Using some technical lemmas, we convert these BMIs into LMIs. Finally, some numerical results and simulations are given. We show the effectiveness of the designed state-feedback controller in the robust stabilization of the position of the impact mechanical oscillator under the disturbance.


Author(s):  
Qinghui Du

The problem of adaptive state-feedback stabilization of stochastic nonholonomic systems with an unknown time-varying delay and perturbations is studied in this paper. Without imposing any assumptions on the time-varying delay, an adaptive state-feedback controller is skillfully designed by using the input-state scaling technique and an adaptive backstepping control approach. Then, by adopting the switching strategy to eliminate the phenomenon of uncontrollability, the proposed adaptive state-feedback controller can guarantee that the closed-loop system has an almost surely unique solution for any initial state, and the equilibrium of interest is globally asymptotically stable in probability. Finally, the simulation example shows the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document