The finite element analysis of stress concentration factor for the V-notch on the inner surface of cylindrical shell

Author(s):  
Ni Yanguang ◽  
Guo Guangli
Author(s):  
Yuhui Huang ◽  
Chengcheng Wang ◽  
Shan-Tung Tu ◽  
Fu-Zhen Xuan ◽  
Takamoto Itoh

Finite element analysis is adopted to study the stress concentration of pit area under tension-torsion loading. The stress concentration factors under regular evolution and irregular evolution of pits are investigated by conducting a series of three-dimensional semi-elliptical pitted models. Based on the finite element analysis, it can be concluded that pit aspect ratio (a/2c) is a significant parameter affecting stress concentration factor (SCF) for regular evolution pits. Pits, having higher aspect ratio, are very dangerous form and can cause significant reduction in the load carrying capacity. When local dissolution occurs in the pitting area, SCF will have a sharp increase, it is more probable for a crack to initiate from these areas compared with pits for regular evolution. Furthermore, local dissolution coefficient is proposed to study effect of local dissolution within the pit on SCF.


Author(s):  
Jing Zhang ◽  
Jianchun Fan ◽  
Laibin Zhang ◽  
Dong Wen ◽  
Yumei Wang

Corrosion-induced pits will disturb the original stress distribution of casing and appear local high stress area. Through 3-D finite element analysis on casing with spherical and cylindrical corrosion cavity, the stress concentration degree and the influences of cavity shape, size and orifice diameter on stress concentration factor are determined and analyzed. The results show that the depth and shape of corrosion cavities are major factors impacting the stress concentration factor. For the casing with corrosion pits, the smaller orifice diameter, the more obvious influence of hemisphere effect on stress concentration factor. With the transition from shallow-spherical cavity to exact hemispherical cavity or from exact hemispherical cavity to deep-spherical cavity or from exact hemispherical cavity to cylindrical cavity, the changes of stress concentration factor show different characteristics.


Author(s):  
Ajay Garg ◽  
Ravi Tetambe

Abstract The elastic stress concentration factor, Kt, is critical in determining the life of machines, especially in the case of notched components experiencing high cycle fatigue. This Kt is defined as the ratio of the maximum stress (σmax) at the notch to the nominal stress (σnom) in the region away from the notch effect. For simple geometries such as, plate with a hole, calculation of Kt from either closed form solution or from making simple but valid assumptions is possible [1,2]. However, for complex machine components such data is usually not available in the literature. Using Kt values from the simple geometries may lead to either over or under estimation of the real Kt for such complex geometries. Such error can then further lead to a substandard product or a product which is overdesigned and expensive. Present paper outlines a methodology for computing reasonably accurate elastic stress concentration factor, Kt, using finite element analysis (FEA) tool. The maximum stress (σmax) is readily available from the finite element analysis. The nominal stress (σnom) near the stress concentration is however can not be directly extracted from the FEA results. A novel approach of estimating reasonably accurate σnom is presented in this paper. This approach is based on selecting the correct path at the stress concentration region, post processing the stress and the stress gradient results along that path and identifying the cut of point where stress concentration effect begins to take place. This methodology is first validated using two examples with known Kt and later applied to a real world problem.


1999 ◽  
Vol 121 (3) ◽  
pp. 252-256 ◽  
Author(s):  
C. S. Sloan ◽  
M. D. Cowell ◽  
T. F. Lehnhoff

Stress concentration factors have been determined for large hole to small hole diameter ratios (D/d) of 10 to 50 for two holes in an infinitely wide tension-loaded panel. Finite element analysis was used to model the system of two holes in a plate that approximates the infinitely wide and tall case. Both the D/d ratio and edge to edge hole spacing were examined for hole placement along an axis perpendicular to the direction of the tension field. It was found for large D/d ratios that the stress concentration factor was only dependent on the distance between the hole edges divided by the large hole diameter. For the configurations analyzed, the stress concentration factors varied from approximately 3 to 11.


2010 ◽  
Vol 163-167 ◽  
pp. 460-464 ◽  
Author(s):  
Jia Zhang ◽  
Shu Ying Qu ◽  
Guo Dong Zhang ◽  
Hao Liu

By terms of the numerical modeling of ABAQUS software, the analysis of the stress concentration factor (SCF) of tubular T-joints subjected to axial load is analyzed in this paper. The magnitude and the distribution of the SCF are also obtained. Through the finite element analysis of 816 models, the effect of geometrical parameters on the value and distribution of the SCF is investigated. Then based on these results, the parametric equations of the maximal SCF and SCF distribution for T-joints subjected to axial load are presented. Error analysis of these parametric equations is also carried out.


Author(s):  
Andrzej T. Strzelczyk ◽  
San S. Ho

ASME Code stress assessment of pressure vessels in the power generation industry is usually done by finite element analysis using one of the two approaches. In the first, “shell-element” approach, vessels are modeled out of shell elements; primary plus bending and primary plus secondary stresses are taken directly from the finite element analysis results and the alternating stresses are based on primary plus secondary stresses prorated by respective stress concentration factors. The strength of the “shell-element” approach is its simplicity; its weakness is problematic modeling of the stress concentration and some modeling difficulties (varying wall thickness, nozzle/vessel connectivity, pressure applied to the mid-surface instead of to the inner surface.) In the second, “solid-element” approach, vessels are modeled out of solid elements; “linearized” stresses can not be taken directly from the finite element analysis results, first they must be linearized, and only then, can be compared against their allowable counterparts; the alternating stresses can be based directly on the outer/inner-surface-node-stresses, provided that the mesh of the model is fine enough to account for the stress concentration effect. The strength of the “solid-element” approach is its high accuracy; its weakness is the time consuming, sometimes ambiguous, stress linearization process. This paper proposes a modification of the “solid-element” approach, in which the time consuming linearization process is replaced by a modification of the original model. To do so, a vessel must be modeled out of quadratic 20 node solid elements; the mesh density of the model (on its surface and through thickness) must be adequate for stress concentration representation and the mesh lines in the thickness direction must be more or less normal to the surfaces. The results from this original model can be taken directly for fatigue evaluation. To obtain the “linearized” stresses the original model must be slightly modified, specifically the number of elements through thickness must be reduced to one, and the reduced integration technique is recommended. For such a modified model, the nodal stresses are equivalent to the “linearized stresses” of the original model. The equivalence is discussed on a model of a circular nozzle attached to a cylindrical vessel. The vessel loads are pressure and thermal expansion.


2013 ◽  
Vol 465-466 ◽  
pp. 1385-1389
Author(s):  
S.R. Masrol ◽  
Waluyo Adi Siswanto

Stress concentration factor for a plate with circular free stress hole subjected to a uniform far field tension in single direction was investigated in this study. The stress concentration level along X and Y axis was determined by the elasticity theoretical method. Finite element analysis using LISA free source software was validated by the elasticity theoretical results. It was found that finite element analysis stress concentration factor results shows similar pattern as theoretical but higher near of the hole. Plain strain analysis with Quad 8 element type showed better results compared to plain stress with Quad 4 element type and plain strain with Quad 4 element type.


Sign in / Sign up

Export Citation Format

Share Document