Research of fault-tolerance technique for high availability Industrial Ethernet

Author(s):  
Aidong Xu ◽  
Liqun Jiang ◽  
Haibin Yu
Author(s):  
Asif Imran ◽  
Alim Ul Gias ◽  
Rayhanur Rahman ◽  
Amit Seal ◽  
Tajkia Rahman ◽  
...  

Author(s):  
В.А. Рудометкин

В настоящее время большинство сервисов переходят в онлайн, что позволяет пользователям получать услугу в любое время. Высокая доступность услуги приводит к росту количества пользователей, что влечет за собой повышение нагрузки на систему, поэтому необходимо уделить особое внимание отказоустойчивости системы перед началом ее разработки. Рассматриваются основные проблемы высоконагруженных систем, способ оптимизации приложения путем распараллеливания задач по ядрам процессора. В данной статье описывается необходимость перехода на микросервисную архитектуру, ее недостатки и способы их устранения. В процессе решения проблем масштабирования, затрагиваются проблемы распределенных транзакций и долгого ответа от сервера. Nowadays, most of the services are moving online, which allows users to receive the service at any time. The high availability of the service leads to an increase in the number of users, which entails an increase in the load on the system, therefore, it is necessary to pay special attention to the fault tolerance of the system before starting its development. The main problems of high-load systems, a way to optimize an application by parallelizing tasks across processor cores are considered. This article describes the need to migrate to a microservice architecture, its weaknesses, and how to fix them. In the process of solving scaling problems, the problems of distributed transactions and long response from the server are addressed.


2020 ◽  
Vol 8 (5) ◽  
pp. 2040-2044

The cloud technologies are gaining boom in the field of information technology. But on the same side cloud computing sometimes results in failures. These failures demand more reliable frameworks with high availability of computers acting as nodes. The request made by the user is replicated and sent to various VMs. If one of the VMs fail, the other can respond to increase the reliability. A lot of research has been done and being carried out to suggest various schemes for fault tolerance thus increasing the reliability. Earlier schemes focus on only one way of dealing with faults but the scheme proposed by the the author in this paper presents an adaptive scheme that deals with the issues related to fault tolerance in various cloud infrastructure. The projected scheme uses adaptive behavior during the selection of replication and fine-grained checkpointing methods for attaining a reliable cloud infrastructure that can handle different client requirements. In addition to it the algorithm also determines the best suited fault tolerance method for every designated virtual node. Zheng, Zhou,. Lyu and I. King (2012).


2015 ◽  
Vol 5 (2) ◽  
pp. 36-52 ◽  
Author(s):  
Sikha Bagui ◽  
Loi Tang Nguyen

In this paper, the authors present an architecture and implementation of a distributed database system using sharding to provide high availability, fault-tolerance, and scalability of large databases in the cloud. Sharding, or horizontal partitioning, is used to disperse the data among the data nodes located on commodity servers for effective management of big data on the cloud.


Author(s):  
Arshad A. Hussein ◽  
Adel AL-zebari ◽  
Naaman Omar ◽  
Karwan Jameel Merceedi ◽  
Abdulraheem Jamil Ahmed ◽  
...  

The use of technology has grown dramatically, and computer systems are now interconnected via various communication mediums. The use of distributed systems (DS) in our daily activities has only gotten better with data distributions. This is due to the fact that distributed systems allow nodes to arrange and share their resources across linked systems or devices, allowing humans to be integrated with geographically spread computer capacity. Due to multiple system failures at multiple failure points, distributed systems may result in a lack of service availability. to avoid multiple system failures at multiple failure points by using fault tolerance (FT) techniques in distributed systems to ensure replication, high redundancy, and high availability of distributed services. In this paper shows ease fault tolerance systems, its requirements, and explain about distributed system. Also, discuss distributed system architecture; furthermore, explain used techniques of fault tolerance, in additional that review some recent literature on fault tolerance in distributed systems and finally, discuss and compare the fault tolerance literature.


2012 ◽  
Vol 2 (3) ◽  
pp. 98-109
Author(s):  
Ahmad Shukri Mohd Noor ◽  
Tutut Herawan ◽  
Mustafa Mat Deris

High availability is important for large scale distributed systems. Replication provides effective ways to enhance performance, high availability and fault tolerance in distributed systems. An efficient and effective replication technique is the key to improve the availability performance. Data and processes can be replicated for failures recovery. There are currently projects successfully implemented in two-replica distribution technique (TRDT) or primary–backup technique. However, these projects have their weaknesses of increasing cost overhead and inherit irrecoverable scenarios from TRDT such as double faults when both copies of replicated components are damaged. The authors propose the Neighbor Replica Distributed Technique (NRDT) availability prediction model. Focusing on improving high availability in which it predicts future expectation of interdependent server’s availability in a distributed online system over an extended period of time. The results and discussion are explored further in the article.


Sign in / Sign up

Export Citation Format

Share Document