Finite Element Analysis for Die Compaction Process of Cemented Carbide Tool Parts

2004 ◽  
Vol 28 (8) ◽  
pp. 1140-1151 ◽  
Author(s):  
ChungMin Hyun ◽  
YoungSam Kwon ◽  
SukHwan Chung ◽  
MyoungJin Kim ◽  
SangYul Ha ◽  
...  
Author(s):  
Siyuan Gao ◽  
Minli Zheng ◽  
Jinguo Chen ◽  
Wei Zhang

Hardness is a critical mechanical property of cutting tools, which significantly affects the cutting performance and wear resistance. Therefore, it is of great significance to obtain the hardness of the tool surface accurately. This paper presents a method based on finite element method (FEM) for studying the hardness of carbide tools. The microstructure of the carbide tool is obtained by scanning electron microscope(SEM). Combined with stereo principle, and secondary treatment, a three-dimensional multi-crystal model of carbide tool and indentation is established, and the model and hardness value obtained by different calculation methods are verified by microhardness test. The results show that the real hardness of the cemented carbide tool can be obtained by the indentation FEM model. The hardness values of cemented carbide tools are then calculated by the traditional method, Oliver-Pharr (OP) method and indentation method, respectively. It is found that the hardness value of the traditional method is the largest and fluctuates greatly, while the hardness values calculated by the OP method and indentation method are similar, and the fluctuation range of the hardness value calculated by the OP method is larger. In conclusion, the hardness calculated by the indentation work method is the best.


2020 ◽  
Vol 180 ◽  
pp. 04006
Author(s):  
Gheorghe Voicu ◽  
Mircea Lazea ◽  
Gabriel-Alexandru Constantin ◽  
Elena-Madalina Stefan ◽  
Mariana-Gabriela Munteanu

Vehicles that collect and transport household waste are equipped with complex systems that perform the loading of the waste from the stationary collection containers, take over and pre-compact of material, compaction in the body of the structure and finally the landfill of the collected waste. Of all these operations, the compaction process is by far the most mechanically demanding. In this paper, the structural analysis of the compactor plate from a garbage truck is presented. In the first stage it was carried out parametric modelling of the assembly composed of compactor plate, counter pressure plate, the back of the garbage truck and to be compacted material. After assembly, the dynamic simulation of the compaction process in the garbage truck was performed, and the compaction mechanical stresses for the compactor plate were loaded in the Simulation module of the SolidWorks 2016 program. Here the finite element analysis was performed, resulting in the value and dispersion of the equivalent stresses (calculated by von Mises criterion), displacements and relative deformations of compactor plate from the analysed garbage truck.


Sign in / Sign up

Export Citation Format

Share Document