Face Recognition using Modified Power Law Transform and Double Density Dual Tree DWT

Author(s):  
D Ravinaik ◽  
C O Pavan ◽  
Sachin K Bhat Agni ◽  
Prasanna Prakash Pai ◽  
K.Suresh Babu ◽  
...  
2005 ◽  
Vol 4 (4) ◽  
pp. 249-260 ◽  
Author(s):  
Mauro Grigioni ◽  
Umberto Morbiducci ◽  
Giuseppe D’Avenio ◽  
Giacomo Di Benedetto ◽  
Costantino Del Gaudio

2005 ◽  
Vol 95 (9) ◽  
pp. 983-991 ◽  
Author(s):  
Kathryn E. Sackett ◽  
Christopher C. Mundt

Field data on disease gradients are essential for understanding the spread of plant diseases. In particular, dispersal far from an inoculum source can drive the behavior of an expanding focal epidemic. In this study, primary disease gradients of wheat stripe rust, caused by the aerially dispersed fungal pathogen Puccinia striiformis, were measured in Madras and Hermiston, OR, in the spring of 2002 and 2003. Plots were 6.1 m wide by 128 to 171 m long, and inoculated with urediniospores in an area of 1.52 by 1.52 m. Gradients were measured as far as 79.2 m downwind and 12.2 m upwind of the focus. Four gradient models—the power law, the modified power law, the exponential model, and the Lambert's general model—were fit to the data. Five of eight gradients were better fit by the power law, modified power law, and Lambert model than by the exponential, revealing the non-exponentially bound nature of the gradient tails. The other three data sets, which comprised fewer data points, were fit equally well by all the models. By truncating the largest data sets (maximum distances 79.2, 48.8, and 30.5 m) to within 30.5, 18.3, and 6.1 m of the focus, it was shown how the relative suitability of dispersal models can be obscured when data are available only at a short distance from the focus. The truncated data sets were also used to examine the danger associated with extrapolating gradients to distances beyond available data. The power law and modified power law predicted dispersal at large distances well relative to the Lambert and exponential models, which consistently and sometimes severely underestimated dispersal at large distances.


2019 ◽  
Vol 24 (3) ◽  
pp. 426-439
Author(s):  
Farzad Ebrahimi ◽  
Ali Jafari

In this disquisition, an exact solution method is developed for analyzing the vibration characteristics of porous functionally graded (FG) beams by considering neutral surface position and different thermal loadings via a four-variable shear deformation refined beam theory. Four types of environmental conditions through the z-axis direction are supposed as: uniform (UTR), linear (LTR), nonlinear (NLTR) and sinusoidal (STR) temperature rises. Mechanical properties of porous FG beams are supposed to vary through the thickness direction and are modeled via the modified power-law. The modified power-law is formulated using the concept of even and uneven porosity distributions. Since the variation of pores along the thickness direction influences the mechanical properties, porosity plays a key role in the mechanical response of FG structures. The governing differential equations and related boundary conditions of porous FG beams are subjected to temperature field that is derived by Hamilton's principle based on a four-variable refined theory which verifies shear deformation regardless of any shear correction factor. The Navier-type solution procedure is used to achieve the natural frequencies of porous-FG beams supposed to various thermal loadings which satisfies the simply-simply boundary condition. A parametric study is led to carry out the effects of material graduation exponent, porosity volume fraction, different porosity distribution, and thermal effect on dimensionless frequencies of porous FG beams. It is concluded that these parameters play noticeable roles in the vibration behavior of imperfect FG beams. Presented numerical results can be applied as benchmarks for future designs of imperfect FG structures with porosity phases.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
M. M. Molla ◽  
L. S. Yao

Natural convection of non-Newtonian fluids along a vertical wavy surface with uniform surface temperature has been investigated using a modified power-law viscosity model. An important parameter of the problem is the ratio of the length scale introduced by the power-law and the wavelength of the wavy surface. In this model there are no physically unrealistic limits in the boundary-layer formulation for power-law, non-Newtonian fluids. The governing equations are transformed into parabolic coordinates and the singularity of the leading edge removed; hence, the boundary-layer equations can be solved straightforwardly by marching downstream from the leading edge. Numerical results are presented for the case of shear-thinning as well as shear-thickening fluid in terms of the viscosity, velocity, and temperature distribution, and for important physical properties, namely, the wall shear stress and heat transfer rates in terms of the local skin-friction coefficient and the local Nusselt number, respectively. Also results are presented for the variation in surface amplitude and the ratio of length scale to surface wavelength. The numerical results demonstrate that a Newtonian-like solution for natural convection exists near the leading edge where the shear-rate is not large enough to trigger non-Newtonian effects. After the shear-rate increases beyond a threshold value, non-Newtonian effects start to develop.


1985 ◽  
Vol 107 (1) ◽  
pp. 10-14 ◽  
Author(s):  
A. S. Mikhail

Various models that are used for height extrapolation of short and long-term averaged wind speeds are discussed. Hourly averaged data from three tall meteorological towers (the NOAA Erie Tower in Colorado, the Battelle Goodnoe Hills Tower in Washington, and the WKY-TV Tower in Oklahoma), together with data from 17 candidate sites (selected for possible installation of large WECS), were used to analyze the variability of short-term average wind shear with atmospheric and surface parameters and the variability of the long-term Weibull distribution parameter with height. The exponents of a power-law model, fit to the wind speed profiles at the three meteorological towers, showed the same variability with anemometer level wind speed, stability, and surface roughness as the similarity law model. Of the four models representing short-term wind data extrapolation with height (1/7 power law, logarithmic law, power law, and modified power law), the modified power law gives the minimum rms for all candidate sites for short-term average wind speeds and the mean cube of the speed. The modified power-law model was also able to predict the upper-level scale factor for the WKY-TV and Goodnoe Hills Tower data with greater accuracy. All models were not successful in extrapolation of the Weibull shape factors.


Sign in / Sign up

Export Citation Format

Share Document