Multiple-face tracking system for general region-of-interest video coding

Author(s):  
L.L. Yang ◽  
M.A. Robertson
Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2925
Author(s):  
Antonio Mederos-Barrera ◽  
Cristo Jurado-Verdu ◽  
Victor Guerra ◽  
Jose Rabadan ◽  
Rafael Perez-Jimenez

Visible light communications (VLC) technology is emerging as a candidate to meet the demand for interconnected devices’ communications. However, the costs of incorporating specific hardware into end-user devices slow down its market entry. Optical camera communication (OCC) technology paves the way by reusing cameras as receivers. These systems have generally been evaluated under static conditions, in which transmitting sources are recognized using computationally expensive discovery algorithms. In vehicle-to-vehicle networks and wearable devices, tracking algorithms, as proposed in this work, allow one to reduce the time required to locate a moving source and hence the latency of these systems, increasing the data rate by up to 2100%. The proposed receiver architecture combines discovery and tracking algorithms that analyze spatial features of a custom RGB LED transmitter matrix, highlighted in the scene by varying the cameras’ exposure time. By using an anchor LED and changing the intensity of the green LED, the receiver can track the light source with a slow temporal deterioration. Moreover, data bits sent over the red and blue channels do not significantly affect detection, hence transmission occurs uninterrupted. Finally, a novel experimental methodology to evaluate the evolution of the detection’s performance is proposed. With the analysis of the mean and standard deviation of novel K parameters, it is possible to evaluate the detected region-of-interest scale and centrality against the transmitter source’s ideal location.


Author(s):  
Diego Jesus Serrano-Carrasco ◽  
Antonio Jesus Diaz-Honrubia ◽  
Pedro Cuenca

AbstractWith the advent of smartphones and tablets, video traffic on the Internet has increased enormously. With this in mind, in 2013 the High Efficiency Video Coding (HEVC) standard was released with the aim of reducing the bit rate (at the same quality) by 50% with respect to its predecessor. However, new contents with greater resolutions and requirements appear every day, making it necessary to further reduce the bit rate. Perceptual video coding has recently been recognized as a promising approach to achieving high-performance video compression and eye tracking data can be used to create and verify these models. In this paper, we present a new algorithm for the bit rate reduction of screen recorded sequences based on the visual perception of videos. An eye tracking system is used during the recording to locate the fixation point of the viewer. Then, the area around that point is encoded with the base quantization parameter (QP) value, which increases when moving away from it. The results show that up to 31.3% of the bit rate may be saved when compared with the original HEVC-encoded sequence, without a significant impact on the perceived quality.


Author(s):  
Marwa Meddeb ◽  
Marco Cagnazzo ◽  
Béatrice Pesquet-Popescu

This paper presents a novel rate control scheme designed for the newest high efficiency video coding (HEVC) standard, and aimed at enhancing the quality of regions of interest (ROI) for a videoconferencing system. It is designed to consider the different regions at both frame level and coding tree unit (CTU) level. The proposed approach allocates a higher bit rate to the region of interest while keeping the global bit rate close to the assigned target value. The ROIs, typically faces in this application, are automatically detected and each CTU is classified in a region of interest map. This binary map is given as input to the rate control algorithm and the bit allocation is made accordingly. The algorithm is tested, first, using the initial version of the controller introduced in HEVC test model (HM.10), then, extended in HM.13. In this work, we first investigate the impact of differentiated bit allocation between the two regions using a fixed bit rate ratio in intra-coded frames (I-frames) and Bidirectionally predicted frames (B-frames). Then, unit quantization parameters (QPs) are computed independently for CTUs of different regions. The proposed approach has been compared to the reference controller implemented in HM and to a ROI-based rate control algorithm initially proposed for H.264 that we adopted to HEVC and implemented in HM.9. Experimental results show that our scheme has comparable performances with the ROI-based controller proposed for H.264. It achieves accurate target bit rates and provides an improvement in region of interest quality, both in objective metrics (up to 2 dB in PSNR) and based on subjective quality evaluation.


Author(s):  
Takuma Funahashi ◽  
Tsuyoshi Yamaguchi ◽  
Masafumi Tominaga ◽  
George Lashkia ◽  
Hiroyasu Koshimizu

Sign in / Sign up

Export Citation Format

Share Document