Real-time hand detection based on multi-stage HOG-SVM classifier

Author(s):  
Jiang Guo ◽  
Jun Cheng ◽  
Jianxin Pang ◽  
Yu Guo
Author(s):  
Yuvraj Sanjayrao Takey ◽  
Sai Gopal Tatikayala ◽  
Satyanadha Sarma Samavedam ◽  
P R Lakshmi Eswari ◽  
Mahesh Uttam Patil

2014 ◽  
Vol 610 ◽  
pp. 339-344
Author(s):  
Qiang Guo ◽  
Yun Fei An

A UCA-Root-MUSIC algorithm for direction-of-arrival (DOA) estimation is proposed in this paper which is based on UCA-RB-MUSIC [1]. The method utilizes not only a unitary transformation matrix different from UCA-RB-MUSIC but also the multi-stage Wiener filter (MSWF) to estimate the signal subspace and the number of sources, so that the new method has lower computational complexity and is more conducive to the real-time implementation. The computer simulation results demonstrate the improvement with the proposed method.


Sensors ◽  
2015 ◽  
Vol 15 (6) ◽  
pp. 12410-12427 ◽  
Author(s):  
Hanguen Kim ◽  
Sangwon Lee ◽  
Dongsung Lee ◽  
Soonmin Choi ◽  
Jinsun Ju ◽  
...  

2021 ◽  
Vol 28 ◽  
pp. 1510-1514
Author(s):  
Wanli Peng ◽  
Jinyu Zhang ◽  
Yiming Xue ◽  
Zhenghong Yang

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Yan-Guo Zhao ◽  
Feng Zheng ◽  
Zhan Song

Sliding-window based multiclass hand posture detections are often performed by detecting postures of each predefined category using an independent detector, which makes it lack efficiency and results in high postures confusion rates in real-time applications. To tackle such problems, in this work, an efficient cascade detector that integrates multiple softmax-based binary (SftB) models and a softmax-based multiclass (SftM) model is investigated to perform multiclass posture detection in parallel. The SftB models are used to distinguish the predefined postures from the background regions, and the SftM model is applied to discriminate among all the predefined hand posture categories. Another usage of the cascade structure is that it could effectively decompose the complexity of background pattern space and therefore improve the detection accuracy. In addition, to balance the detection accuracy and efficiency, the HOG features of increasing resolutions will be adopted by classifiers of increasing stage-levels in the cascade structure. The experiments are implemented under various scenarios with complicated background and challenging lightings. Results show the superiority of the proposed SftB classifiers over the traditional binary classifiers such as logistic regression, as well as the accuracy and efficiency improvements brought by the softmax-based cascade architecture compared with the noncascade multiclass softmax detectors.


Author(s):  
Rayane El Sibai ◽  
Chady Abou Jaoude ◽  
Jacques Demerjian

2021 ◽  
Vol 8 ◽  
Author(s):  
Mojtaba Akbari ◽  
Jay Carriere ◽  
Tyler Meyer ◽  
Ron Sloboda ◽  
Siraj Husain ◽  
...  

During an ultrasound (US) scan, the sonographer is in close contact with the patient, which puts them at risk of COVID-19 transmission. In this paper, we propose a robot-assisted system that automatically scans tissue, increasing sonographer/patient distance and decreasing contact duration between them. This method is developed as a quick response to the COVID-19 pandemic. It considers the preferences of the sonographers in terms of how US scanning is done and can be trained quickly for different applications. Our proposed system automatically scans the tissue using a dexterous robot arm that holds US probe. The system assesses the quality of the acquired US images in real-time. This US image feedback will be used to automatically adjust the US probe contact force based on the quality of the image frame. The quality assessment algorithm is based on three US image features: correlation, compression and noise characteristics. These US image features are input to the SVM classifier, and the robot arm will adjust the US scanning force based on the SVM output. The proposed system enables the sonographer to maintain a distance from the patient because the sonographer does not have to be holding the probe and pressing against the patient's body for any prolonged time. The SVM was trained using bovine and porcine biological tissue, the system was then tested experimentally on plastisol phantom tissue. The result of the experiments shows us that our proposed quality assessment algorithm successfully maintains US image quality and is fast enough for use in a robotic control loop.


Author(s):  
Guoqing Zhou ◽  
Xiang Zhou ◽  
Tao Yue ◽  
Yilong Liu

This paper presents a method which combines the traditional threshold method and SVM method, to detect the cloud of Landsat-8 images. The proposed method is implemented using DSP for real-time cloud detection. The DSP platform connects with emulator and personal computer. The threshold method is firstly utilized to obtain a coarse cloud detection result, and then the SVM classifier is used to obtain high accuracy of cloud detection. More than 200 cloudy images from Lansat-8 were experimented to test the proposed method. Comparing the proposed method with SVM method, it is demonstrated that the cloud detection accuracy of each image using the proposed algorithm is higher than those of SVM algorithm. The results of the experiment demonstrate that the implementation of the proposed method on DSP can effectively realize the real-time cloud detection accurately.


Sign in / Sign up

Export Citation Format

Share Document