scholarly journals A Discrete Scheme for Computing Image’s Weighted Gaussian Curvature

Author(s):  
Yuanhao Gong ◽  
Wenming Tang ◽  
Lebin Zhou ◽  
Lantao Yu ◽  
Guoping Qiu
Author(s):  
J.M BUDD ◽  
Y. VAN GENNIP

An emerging technique in image segmentation, semi-supervised learning and general classification problems concerns the use of phase-separating flows defined on finite graphs. This technique was pioneered in Bertozzi and Flenner (2012, Multiscale Modeling and Simulation10(3), 1090–1118), which used the Allen–Cahn flow on a graph, and was then extended in Merkurjev et al. (2013, SIAM J. Imaging Sci.6(4), 1903–1930) using instead the Merriman–Bence–Osher (MBO) scheme on a graph. In previous work by the authors, Budd and Van Gennip (2020, SIAM J. Math. Anal.52(5), 4101–4139), we gave a theoretical justification for this use of the MBO scheme in place of Allen–Cahn flow, showing that the MBO scheme is a special case of a ‘semi-discrete’ numerical scheme for Allen–Cahn flow. In this paper, we extend this earlier work, showing that this link via the semi-discrete scheme is robust to passing to the mass-conserving case. Inspired by Rubinstein and Sternberg (1992, IMA J. Appl. Math.48, 249–264), we define a mass-conserving Allen–Cahn equation on a graph. Then, with the help of the tools of convex optimisation, we show that our earlier machinery can be applied to derive the mass-conserving MBO scheme on a graph as a special case of a semi-discrete scheme for mass-conserving Allen–Cahn. We give a theoretical analysis of this flow and scheme, proving various desired properties like existence and uniqueness of the flow and convergence of the scheme, and also show that the semi-discrete scheme yields a choice function for solutions to the mass-conserving MBO scheme.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nikolaos Vasios ◽  
Bolei Deng ◽  
Benjamin Gorissen ◽  
Katia Bertoldi

AbstractMulti-welled energy landscapes arising in shells with nonzero Gaussian curvature typically fade away as their thickness becomes larger because of the increased bending energy required for inversion. Motivated by this limitation, we propose a strategy to realize doubly curved shells that are bistable for any thickness. We then study the nonlinear dynamic response of one-dimensional (1D) arrays of our universally bistable shells when coupled by compressible fluid cavities. We find that the system supports the propagation of bidirectional transition waves whose characteristics can be tuned by varying both geometric parameters as well as the amount of energy supplied to initiate the waves. However, since our bistable shells have equal energy minima, the distance traveled by such waves is limited by dissipation. To overcome this limitation, we identify a strategy to realize thick bistable shells with tunable energy landscape and show that their strategic placement within the 1D array can extend the propagation distance of the supported bidirectional transition waves.


Author(s):  
Wojciech Szumiński ◽  
Andrzej J. Maciejewski

AbstractIn the paper [1], the author formulates in Theorem 2 necessary conditions for integrability of a certain class of Hamiltonian systems with non-constant Gaussian curvature, which depends on local coordinates. We give a counterexample to show that this theorem is not correct in general. This contradiction is explained in some extent. However, the main result of this note is our theorem that gives new simple and easy to check necessary conditions to integrability of the system considered in [1]. We present several examples, which show that the obtained conditions are effective. Moreover, we justify that our criterion can be extended to wider class of systems, which are given by non-meromorphic Hamiltonian functions.


2021 ◽  
Vol 404 ◽  
pp. 125997
Author(s):  
Van Chien Le ◽  
Marián Slodička ◽  
Karel Van Bockstal

1995 ◽  
Vol 117 (1) ◽  
pp. 153-160
Author(s):  
Kanghui Guo

Let S(Rn) be the space of Schwartz class functions. The dual space of S′(Rn), S(Rn), is called the temperate distributions. In this article, we call them distributions. For 1 ≤ p ≤ ∞, let FLp(Rn) = {f:∈ Lp(Rn)}, then we know that FLp(Rn) ⊂ S′(Rn), for 1 ≤ p ≤ ∞. Let U be open and bounded in Rn−1 and let M = {(x, ψ(x));x ∈ U} be a smooth hypersurface of Rn with non-zero Gaussian curvature. It is easy to see that any bounded measure σ on Rn−1 supported in U yields a distribution T in Rn, supported in M, given by the formula


1972 ◽  
Vol 72 (3) ◽  
pp. 489-498 ◽  
Author(s):  
R. Cade

AbstractAn existence theorem is proved for Robin's integral equation for the density of electric charge on a closed surface, under the assumptions that the surface is convex, smooth and twice continuously differentiable. The technique is essentially Neumann's method of the arithmetic mean, used by Robin himself to show that the solution, assumed to exist, can be successively approximated by a sequence. In order to facilitate the main argument of the proof, it is assumed initially that the Gaussian curvature is everywhere positive, but this restriction is subsequently removed.


2015 ◽  
Vol 8 (4) ◽  
pp. 582-604
Author(s):  
Zhengqin Yu ◽  
Xiaoping Xie

AbstractThis paper proposes and analyzes semi-discrete and fully discrete hybrid stress finite element methods for elastodynamic problems. A hybrid stress quadrilateral finite element approximation is used in the space directions. A second-order center difference is adopted in the time direction for the fully discrete scheme. Error estimates of the two schemes, as well as a stability result for the fully discrete scheme, are derived. Numerical experiments are done to verify the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document