A Projection-Based Algorithm for Constrained L1- Minimization Optimization with Application to Sparse Signal Reconstruction

Author(s):  
Qingshan Liu ◽  
Wei Zhang ◽  
Jiang Xiong ◽  
Bingrong Xu ◽  
Long Cheng
2021 ◽  
Vol 140 ◽  
pp. 100-112
Author(s):  
You Zhao ◽  
Xiaofeng Liao ◽  
Xing He ◽  
Rongqiang Tang ◽  
Weiwei Deng

2019 ◽  
Vol 26 (10) ◽  
pp. 1541-1545 ◽  
Author(s):  
Yunmei Shi ◽  
Xing-Peng Mao ◽  
Chunlei Zhao ◽  
Yong-Tan Liu

2021 ◽  
Author(s):  
Han Wang ◽  
Xianpeng Wang

Abstract For the sparse correlation between channels in multiple input multiple output filter bank multicarrier with offset quadrature amplitude modulation (MIMO-FBMC/OQAM) systems, the distributed compressed sensing (DCS)-based channel estimation approach is studied. A sparse adaptive distributed sparse channel estimation method based on weak selection threshold is proposed. Firstly, the correlation between MIMO channels is utilized to represent a joint sparse model, and channel estimation is transformed into a joint sparse signal reconstruction problem. Then, the number of correlation atoms for inner product operation is optimized by weak selection threshold, and sparse signal reconstruction is realized by sparse adaptation. The experiment results show that proposed DCS-based method not only estimates the multipath channel components accurately but also achieves higher channel estimation performance than classical orthogonal matching pursuit (OMP) method and other traditional DCS methods in the time-frequency dual selective channels.


Author(s):  
Xiaopei Zhu ◽  
Li Yan ◽  
Boyang Qu ◽  
Pengwei Wen ◽  
Zhao Li

Aims: This paper proposes a differential evolution algorithm to solve the multi-objective sparse reconstruction problem (DEMOSR). Background: The traditional method is to introduce the regularization coefficient and solve this problem through a regularization framework. But in fact, the sparse reconstruction problem can be regarded as a multi-objective optimization problem about sparsity and measurement error (two contradictory objectives). Objective: A differential evolution algorithm to solve multi-objective sparse reconstruction problem (DEMOSR) in sparse signal reconstruction and the practical application. Methods: First of all, new individuals are generated through tournament selection mechanism and differential evolution. Secondly, the iterative half thresholding algorithm is used for local search to increase the sparsity of the solution. To increase the diversity of solutions, a polynomial mutation strategy is introduced. Results: In sparse signal reconstruction, the performance of DEMOSR is better than MOEA/D-ihalf and StEMO. In addition, it can verify the effectiveness of DEMOSR in practical applications for sparse reconstruction of magnetic resonance images. Conclusions: According to the experimental results of DEMOSR in sparse signal reconstruction and the practical application of reconstructing magnetic resonance images, it can be proved that DEMOSR is effective in sparse signal and image reconstruction.


Sign in / Sign up

Export Citation Format

Share Document