scholarly journals Analytical redundancy based predictive fault tolerant control of a steer-by-wire system using nonlinear observer

Author(s):  
Sohel Anwar ◽  
Wei Niu
2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Bing Zheng ◽  
Sohel Anwar

This paper describes a fault-tolerant steer-by-wire road wheel control system. With dual motor and dual microcontroller architecture, this system has the capability to tolerate single-point failures without degrading the control system performance. The arbitration bus, mechanical arrangement of motors, and the developed control algorithm allow the system to reconfigure itself automatically in the event of a single-point fault, and assure a smooth reconfiguration process. Both simulation and experimental results illustrate the effectiveness of the proposed fault-tolerant control system.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4337 ◽  
Author(s):  
Tan Van Nguyen ◽  
Cheolkeun Ha

Electro-hydraulic actuators (EHAs) have been widely used in modern industries. However, sensor faults and actuator faults in EHA systems can arise due to aging during operation, making the system unstable and unsafe. To solve these issues, fault-tolerant control (FTC) techniques for EHA systems have been studied intensively. In this paper, an FTC is proposed and developed for the mini motion package (MMP) EHA system. First, a mathematical model of the MMP system is formulated and improved to provide position tracking control using a well-known proportional-integral-derivative (PID) controller. Second, an unknown input observer (UIO) reconstruction is performed to estimate the states, disturbances, and sensor faults so that an asymptotically stable control error can be obtained by a linear matrix inequality (LMI) optimization algorithm through Lyapunov’s stability condition. Third, the FTC designed for the nonlinear discrete-time system is formed from fault compensation based on a residual logic signal to implement the fault compensation process and ensure stability and tracking performance with respect to minimizing impacts of disturbances and sensor faults. Here, residual is defined by the difference between state response and state estimation. Finally, numerical simulations and experiments of the MMP system are presented to illustrate the efficiency of the proposed FTC technique.


Sign in / Sign up

Export Citation Format

Share Document