The protection of DC railway traction power supply systems against direct lightning strike

Author(s):  
Miroslaw Zielenkiewicz ◽  
Tomasz Maksimowicz ◽  
Radoslaw Burak-Romanowski
2018 ◽  
Vol 47 (3) ◽  
pp. 39-47 ◽  
Author(s):  
Oleksandr Matusevych ◽  
Valeriy Kuznetsov ◽  
Viktor SYCHENKO

Purpose. To develop the method for increasing the efficiency of the equipment’s maintenance and repair system, ensuring necessary level of operational reliability of the equipment, safety and reliability of the electric equipment with minimal expenses on operation. Relevance. Aging of the power equipment in railway power supply systems sharply raised a need for assessment of its states and degree of risk for operation outside rated service life. In critical conditions of technological processes and operational modes of the railways it is necessary to increase the equipment’s operational reliability. The scheduled maintenance and repair system whose main technical and economic criterion is the minimum of equipment’s downtimes on the basis of a rigid regulation of repair cycles, in the conditions of market regulations in the field of repair in many cases does not provide the optimal decisions due to insufficient financing. The solution of this problem is possible by improvement of the maintenance and repair system. Under these conditions the main direction for supporting the operational reliability of power electric equipment on TS is a development of the modern methods based on individual supervision over real changes of technical condition of power equipment. Scientific novelty. In this article the authors proposed an integrated approach, on the basis of which can be developed the effective maintenance and repair system for traction power supply systems. Proposed approach allowed to react quickly to changes of service conditions on traction substations, to control the technical condition of power electric equipment under the conditions of uncertainty, to establish interrelation between quality of service and operational reliability of the equipment, to choose a service strategy on traction substations. Practical importance. The validity of the developed method was confirmed by the results of calculations and practically by choosing the optimal maintenance's option for transformer TDTN-25000/150-70 U1 (ТДТН-25000/150-70 У1) on traction power supply substation.


2011 ◽  
Vol 130-134 ◽  
pp. 304-308
Author(s):  
Ling Wei ◽  
Jing Shuai Xiao ◽  
Da Yong Geng

The application of electric power, which acts as a pillar energy and economic artery in modern society, is one of the most important symbols of the level of development and comprehensive national power of a country. Var is a crucial factor for the design and operation of AC power systems, and is closely bound up with the safety, stabilization, and economical operation of power systems. With the development of electrified railway, the importance of the dynamic var compensation for traction power supply systems of electrified railway becomes more and more distinct. Developing the var compensation strategy vigorously has important senses in theory and practice. In this article, synthetically considering technique and economic leval of power systems in our country, parameters modeling and design and verification and specific engineering application of a var compensation method are presented. This method is a preferable one for resolving undesirable effect on power systems from traction power supply systems of electrified railway, especially having dynamic and real time characteristics of var compensation.


2014 ◽  
Vol 1055 ◽  
pp. 312-315
Author(s):  
Xue Wu Li ◽  
Peng Xiao Ji

Revamping of electrified railway traction power supply is to improve the railway transport capacity and important measures to promote the development of national economy. As a result of the traction power supply voltage was higher, the simulation technology was applied to modification of the traction power supply system. For the development of research workers to reduce risk and funding has become an international practice. Traction power supply system and the modeling and simulation of the traction power supply capacity technology are discussed in detail. It points out the simulation technology in the development direction of expansion engineering in the application of traction power supply.


Sign in / Sign up

Export Citation Format

Share Document