scholarly journals The method for increasing the efficiency of equipment’s maintenance in railway traction power supply systems

2018 ◽  
Vol 47 (3) ◽  
pp. 39-47 ◽  
Author(s):  
Oleksandr Matusevych ◽  
Valeriy Kuznetsov ◽  
Viktor SYCHENKO

Purpose. To develop the method for increasing the efficiency of the equipment’s maintenance and repair system, ensuring necessary level of operational reliability of the equipment, safety and reliability of the electric equipment with minimal expenses on operation. Relevance. Aging of the power equipment in railway power supply systems sharply raised a need for assessment of its states and degree of risk for operation outside rated service life. In critical conditions of technological processes and operational modes of the railways it is necessary to increase the equipment’s operational reliability. The scheduled maintenance and repair system whose main technical and economic criterion is the minimum of equipment’s downtimes on the basis of a rigid regulation of repair cycles, in the conditions of market regulations in the field of repair in many cases does not provide the optimal decisions due to insufficient financing. The solution of this problem is possible by improvement of the maintenance and repair system. Under these conditions the main direction for supporting the operational reliability of power electric equipment on TS is a development of the modern methods based on individual supervision over real changes of technical condition of power equipment. Scientific novelty. In this article the authors proposed an integrated approach, on the basis of which can be developed the effective maintenance and repair system for traction power supply systems. Proposed approach allowed to react quickly to changes of service conditions on traction substations, to control the technical condition of power electric equipment under the conditions of uncertainty, to establish interrelation between quality of service and operational reliability of the equipment, to choose a service strategy on traction substations. Practical importance. The validity of the developed method was confirmed by the results of calculations and practically by choosing the optimal maintenance's option for transformer TDTN-25000/150-70 U1 (ТДТН-25000/150-70 У1) on traction power supply substation.

Author(s):  
Nikolai Grigoriev ◽  
◽  
Ivan Ignatenko ◽  
Vladimir Kovalev ◽  
Polina Trofimovich ◽  
...  

The article deals with improvement off the efficiency of external and traction power supply systems using for example indicators of traction substations for a real electric transmission line segment of a traction network of 25 kV. The analysis of the functioning of a real section of electrified railways with traction substations, two of which are connected according to the "feeding" scheme is providing in the article. The currents in the wind-ings of traction transformers are calculate for these substations. The proportion of the currents values of the most loaded winding to the two less loaded is 2: 1. The coefficient asymmetry of currents of transformer wind-ings operating on existing traction substations is equal to 1. The results prove a significant currents asymmetry of transformers windings and phases of electric transmission lines which leads to an increasing voltage unbal-ance. New schemes for connecting traction substations for the considered section of electrified railways have been developed in order to improve the quality indicators of electrical energy. New connection schemes for three traction substations, determined according to the requirements for connecting to the external and trac-tion power supply system are presents in the article. The calculation for new schemes of connecting traction substations, similar to the previously considered option, has been performed. The values of winding currents, power transmission line phases and coefficient asymmetry were obtained for new substation connection schemes. The proposed schemes for connecting traction substations provide a decrease in the coefficient asym-metry of the winding currents from 1 to 0.5 and a decrease in the current modulus in the most loaded windings by 1.5 times. New schemes for connecting traction substations reduce the currents of the most loaded windings and phases of the power transmission line, as well as the asymmetry of currents, which ensures an improvement in the efficiency of the external and traction power supply systems of the real traction network.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042082
Author(s):  
O A Stepanskaya ◽  
N D D’yachkova ◽  
A B Batrashov

Abstract The aim of the study is to review the sources covering the problems of accumulating electricity on the railways and to find new solutions to reduce the use of electricity in traction power supply system. The article analyses some existing types of electric energy storage devices (capacitive, inertial, superconducting inductive, electrochemical, fuel cells and pumped storage power plants), their common installation locations, advantages, and disadvantages. The possibility of using them in railway traction power supply systems, in particular in mobile traction substations, is also assessed. In addition, the article lists the parameters on the basis of which the optimum type of storage device can be selected for the given conditions. The study concludes that the use of some types of energy storage devices in mobile traction substations is acceptable when regenerative braking can be used at the site, and this method of energy saving can be recommended in the engineering of new or reconstruction of existing traction substations. It has been found that capacitive and inertial (flywheel) electrical energy storage units are the most suitable in terms of parameters for installation of traction power supply systems.


2021 ◽  
pp. 63-66
Author(s):  
A. L. Kashtanov ◽  
◽  
Yu. V. Plotnikov ◽  

The paper presents a method for selecting the installation locations of power reservation systems of traction substations to reduce electricity losses in the system of traction power supply of DC railways. The analysis of the main criteria affecting the efficiency and reliability of the DC traction power supply system is carried out. The algorithm for selecting the installation locations of power reservation systems has been developed, which allows selecting traction substations that provide the greatest energy effect during the installation of systems


2018 ◽  
Vol 239 ◽  
pp. 01049 ◽  
Author(s):  
Natalia Shurova ◽  
Valerii Li

In the past few years, there has been a trend towards an increase in the volume of transportation by railway. At the same time, the load on the railway infrastructure increases, in particular, on the traction power supply system. It is necessary to solve the problem of increasing the energy efficiency of the external electric power supply system in the conditions of growing freight turnover and taking into account the uncertainty of the initial data. The paper considers one of the methods of strengthening the traction power supply system. Based on the results of the study, an algorithm was developed for selecting the installation sites and power of compensating devices in a traction network in the conditions of increasing freight turnover and under the condition of increasing the energy efficiency of the external power supply system of traction substations due to unloading of supply lines by reactive power and leveling the load in phases. This methodology includes predicting power consumption, determining the installation sites and power of compensating devices in the traction network under condition of uncertainty of the initial data, and then assessing the energy efficiency of the decision made. A calculation was carried out for the proposed algorithm for a section of the Far Eastern Railway which includes nine traction substations.


2011 ◽  
Vol 130-134 ◽  
pp. 304-308
Author(s):  
Ling Wei ◽  
Jing Shuai Xiao ◽  
Da Yong Geng

The application of electric power, which acts as a pillar energy and economic artery in modern society, is one of the most important symbols of the level of development and comprehensive national power of a country. Var is a crucial factor for the design and operation of AC power systems, and is closely bound up with the safety, stabilization, and economical operation of power systems. With the development of electrified railway, the importance of the dynamic var compensation for traction power supply systems of electrified railway becomes more and more distinct. Developing the var compensation strategy vigorously has important senses in theory and practice. In this article, synthetically considering technique and economic leval of power systems in our country, parameters modeling and design and verification and specific engineering application of a var compensation method are presented. This method is a preferable one for resolving undesirable effect on power systems from traction power supply systems of electrified railway, especially having dynamic and real time characteristics of var compensation.


Sign in / Sign up

Export Citation Format

Share Document