Neural Network Assisted Variable-Step-Size P&O for Fast Maximum Power Point Tracking

Author(s):  
Rayane Hijazi ◽  
Nabil Karami
Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3576 ◽  
Author(s):  
Hyeon-Seok Lee ◽  
Jae-Jung Yun

The basic and adaptive maximum power point tracking algorithms have been studied for distributed photovoltaic systems to maximize the energy production of a photovoltaic (PV) module. However, the basic maximum power point tracking algorithms using a fixed step size, such as perturb and observe and incremental conductance, suffer from a trade-off between tracking accuracy and tracking speed. Although the adaptive maximum power point tracking algorithms using a variable step size improve the maximum power point tracking efficiency and dynamic response of the basic algorithms, these algorithms still have the oscillations at the maximum power point, because the variable step size is sensitive to external factors. Therefore, this paper proposes an enhanced maximum power point tracking algorithm that can have fast dynamic response, low oscillations, and high maximum power point tracking efficiency. To achieve these advantages, the proposed maximum power point tracking algorithm uses two methods that can apply the optimal step size to each operating range. In the operating range near the maximum power point, a small fixed step size is used to minimize the oscillations at the maximum power point. In contrast, in the operating range far from the maximum power point, a variable step size proportional to the slope of the power-voltage curve of PV module is used to achieve fast tracking speed under dynamic weather conditions. As a result, the proposed algorithm can achieve higher maximum power point tracking efficiency, faster dynamic response, and lower oscillations than the basic and adaptive algorithms. The theoretical analysis and performance of the proposed algorithm were verified by experimental results. In addition, the comparative experimental results of the proposed algorithm with the other maximum power point tracking algorithms show the superiority of the proposed algorithm.


2019 ◽  
Vol 16 (2) ◽  
pp. 740-744
Author(s):  
R. Geethamani ◽  
C. Pavithra ◽  
B. Niranjana ◽  
V. Gomathy ◽  
P. Chitra

A Variable step size Incremental resistance algorithm for PV system was designed for maximum power point tracking. The outputs are generated with help of MATLAB/SIMLUNK. The performance of the PV system for partial shading condition was observed. The output for the system was found to be more efficient and attains stability much faster than any other controller. The power output can be controlled by varying the scaling factor.


2014 ◽  
Vol 707 ◽  
pp. 377-380
Author(s):  
Bo Qiang Xu ◽  
Jin Bo Li

The maximum power point tracking (MPPT) of photovoltaic arrays can increase the output power of the photovoltaic systerm, improve the utilization of solar energy. This paper describes the output characteristics of the photovoltaic arrays and the principle of maximum power point tracking,then,based on Incremental conductance method, proposes a sub-type of the variable step size MPPT algorithm. simulated using MATLAB/Simulink, the final results show that the proposed algorithm is able to quickly track the maximum power point and power concussion problem has been significantly improved.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 244
Author(s):  
Lieping Zhang ◽  
Zhengzhong Wang ◽  
Peng Cao ◽  
Shenglan Zhang

A photovoltaic power supply with a simple structure and high tracking efficiency is needed in self-powered, wireless sensor networks. First, a maximum power point tracking (MPPT) algorithm, including the load current maximization-perturbation and observation (LCM-P&O) methods, with a fixed step size, is proposed by integrating the traditional load current maximization (LCM) method and perturbation and observation (P&O) method. By sampling the changes of load current and photovoltaic cell input current once the disturbance is applied, the pulse width modulation (PWM) regulation mode, i.e., increasing or reducing, can be determined in the next process. Then, the above algorithm is improved by using the variable step size strategy. By comparing the difference between the absolute value of the observed current value and the theoretical current value at the maximum power point of the photovoltaic cell with the set threshold value, the variable step size for perturbation is determined. MATLAB simulation results show that the LCM-P&O method, with a variable step size, has faster convergence speed and higher tracking accuracy. Finally, the two MPPT algorithms are tested and analyzed under constant voltage source input and indoor fluorescent lamp illumination through an actual circuit, respectively. The experimental results show that the LCM-P&O method with variable step size has a higher tracking efficiency, about 90%–92%, and has higher stability and lower power consumption.


Author(s):  
Mustapha Elyaqouti ◽  
Safa Hakim ◽  
Sadik Farhat ◽  
Lahoussine Bouhouch ◽  
Ahmed Ihlal

In order to maximize the electric energy production of a photovoltaic generator (PVG), the maximum power point tracking (MPPT) methods are usually used in photovoltaic systems. The principle of these techniques is to operate the PVG to the maximum power point (MPP), which depends on the environmental factors, such as solar irradiance and ambient temperature, ensuring the optimal power transfer between PVG and load. In this paper, we present the implementation of two digital MPPT commands using the Arduino Mega type. The two proposed MPPT controls are based on the algorithm of perturb and observe (P&O), the first one with fixed perturbation step and the second one with two perturbations step varying with some conditions. The experimental results show that the P&O algorithm with variable step perturbation gives good results compared to the P&O algorithm with fixed perturbation step in terms of the time response and the oscillations around the MPP.


2011 ◽  
Vol 383-390 ◽  
pp. 1111-1116
Author(s):  
Yuan Xiao Ling ◽  
Wang Chuang ◽  
Li Shi Jun

In Photovoltaic (PV) system, the output characteristic of PV cell is susceptible to external environment, such as temperature, light radiation etc, and showing obvious nonlinear. Therefore, in order to improve the efficiency of PV system, the maximum power point tracking (MPPT) of PV cell is essential. This paper mainly introduces the simulation of PV cell and the methods commonly used in Maximum Power Point Tracking of PV system. For the perturbation and observation (P&O) method the paper presents a new variable step size algorithm and builds a simulation model. The result shows that the proposed algorithm has a better effect on maximum power point tracking of PV cell.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 399 ◽  
Author(s):  
Eyal Amer ◽  
Alon Kuperman ◽  
Teuvo Suntio

Owing to the good trade-off between implementation and performance, fixed-step direct maximum power point tracking techniques (e.g., perturb and observe and incremental conductance algorithms) have gained popularity over the years. In order to optimize their performance, perturbation frequency and perturbation step size are usually determined a priori. While the first mentioned design parameter is typically dictated by the worst-case settling time of the combined energy conversion system, the latter must be high enough to both differentiate the system response from that caused by irradiation variation and match the finite resolution of the analog-to-digital converter in case of digital implementation. Well-established design guidelines, however, aim to optimize steady-state algorithm performance while leaving transients nearly untreated. To improve transient behavior while keeping the steady-state operation unaltered, variable step direct maximum power point tracking algorithms based on adaptive perturbation step size were proposed. This paper proposes a concept of utilizing adaptive perturbation frequency rather than variable step size, based on recently revised guidelines for designing fixed-step direct maximum power point tracking techniques. Preliminary results demonstrate the superiority of the proposed method over adaptive perturbation step size operation during transients, without compromising the steady state performance.


Sign in / Sign up

Export Citation Format

Share Document