Basic research on vacuum-based wet adhesion system for wall climbing robots -Measurement of lubricating action and seal action by the liquid-

Author(s):  
Tohru Miyake ◽  
Hidenori Ishihara ◽  
Tatsuya Tomino
Soft Matter ◽  
2019 ◽  
Vol 15 (13) ◽  
pp. 2817-2825 ◽  
Author(s):  
Meng Li ◽  
Qingwen Dai ◽  
Qing Jiao ◽  
Wei Huang ◽  
Xiaolei Wang

Inspired by the wet adhesion of amphibians, we develop a smart reversible meniscus adhesion system whose capillary effect can be regulated by external magnetic stimuli.


Author(s):  
Pongsiri Borijindakul ◽  
Aihong Ji ◽  
Zhendong Dai ◽  
Stanislav N. Gorb ◽  
Poramate Manoonpong

Developing climbing robots for smooth vertical surfaces (e.g., glass) is one of the most challenging problems in robotics. Here, the adequate functioning of an adhesive foot is an essential factor for successful locomotion performance. Among the various technologies (such as dry adhesion, wet adhesion, magnetic adhesion, and pneumatic adhesion), bio-inspired dry adhesion has been actively studied and successfully applied to climbing robots. Thus, this review focuses on the characteristics of two different types of foot microstructures, namely spatula-shaped and mushroom-shaped, capable of generating such adhesion. These are the most used types of foot microstructures in climbing robots for smooth vertical surfaces. Moreover, this review shows that the spatula-shaped feet are particularly suitable for massive and one-directional climbing robots, whereas mushroom-shaped feet are primarily suitable for light and all-directional climbing robots. Consequently, this study can guide roboticists in selecting the right adhesive foot to achieve the best climbing ability for future robot developments.


2007 ◽  
Vol 2007 (0) ◽  
pp. _2A1-K07_1-_2A1-K07_2
Author(s):  
Tohru MIYAKE ◽  
Hidenori ISHIHARA ◽  
Yuri NAKAHARA ◽  
Motoi YOSHIMURA

Author(s):  
M. Nishigaki ◽  
S. Katagiri ◽  
H. Kimura ◽  
B. Tadano

The high voltage electron microscope has many advantageous features in comparison with the ordinary electron microscope. They are a higher penetrating efficiency of the electron, low chromatic aberration, high accuracy of the selected area diffraction and so on. Thus, the high voltage electron microscope becomes an indispensable instrument for the metallurgical, polymer and biological specimen studies. The application of the instrument involves today not only basic research but routine survey in the various fields. Particularly for the latter purpose, the performance, maintenance and reliability of the microscope should be same as those of commercial ones. The authors completed a 500 kV electron microscope in 1964 and a 1,000 kV one in 1966 taking these points into consideration. The construction of our 1,000 kV electron microscope is described below.


Author(s):  
M.J. Hennessy ◽  
E. Kwok

Much progress in nuclear magnetic resonance microscope has been made in the last few years as a result of improved instrumentation and techniques being made available through basic research in magnetic resonance imaging (MRI) technologies for medicine. Nuclear magnetic resonance (NMR) was first observed in the hydrogen nucleus in water by Bloch, Purcell and Pound over 40 years ago. Today, in medicine, virtually all commercial MRI scans are made of water bound in tissue. This is also true for NMR microscopy, which has focussed mainly on biological applications. The reason water is the favored molecule for NMR is because water is,the most abundant molecule in biology. It is also the most NMR sensitive having the largest nuclear magnetic moment and having reasonable room temperature relaxation times (from 10 ms to 3 sec). The contrast seen in magnetic resonance images is due mostly to distribution of water relaxation times in sample which are extremely sensitive to the local environment.


2003 ◽  
Vol 92 (11) ◽  
pp. 1343-1348
Author(s):  
Menu E ◽  
Scarlatti G ◽  
Barré-Sinoussi F ◽  
Gray G ◽  
Bollinger B ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document