A motion planning method for an anthropomorphic arm based on movement primitives of human arm triangle

Author(s):  
Xilun Ding ◽  
Cheng Fang
Author(s):  
Shiqiu Gong ◽  
Jing Zhao ◽  
Ziqiang Zhang ◽  
Biyun Xie

Purpose This paper aims to introduce the human arm movement primitive (HAMP) to express and plan the motions of anthropomorphic arms. The task planning method is established for the minimum task cost and a novel human-like motion planning method based on the HAMPs is proposed to help humans better understand and plan the motions of anthropomorphic arms. Design/methodology/approach The HAMPs are extracted based on the structure and motion expression of the human arm. A method to slice the complex tasks into simple subtasks and sort subtasks is proposed. Then, a novel human-like motion planning method is built through the selection, sequencing and quantification of HAMPs. Finally, the HAMPs are mapped to the traditional joint angles of a robot by an analytical inverse kinematics method to control the anthropomorphic arms. Findings For the exploration of the motion laws of the human arm, the human arm motion capture experiments on 12 subjects are performed. The results show that the motion laws of human arm are reflected in the selection, sequencing and quantification of HAMPs. These motion laws can facilitate the human-like motion planning of anthropomorphic arms. Originality/value This study presents the HAMPs and a method for selecting, sequencing and quantifying them in human-like style, which leads to a new motion planning method for the anthropomorphic arms. A similar methodology is suitable for robots with anthropomorphic arms such as service robots, upper extremity exoskeleton robots and humanoid robots.


Robotica ◽  
2021 ◽  
pp. 1-18
Author(s):  
Peng Cai ◽  
Xiaokui Yue ◽  
Hongwen Zhang

Abstract In this paper, we present a novel sampling-based motion planning method in various complex environments, especially with narrow passages. We use online the results of the planner in the ADD-RRT framework to identify the types of the local configuration space based on the principal component analysis (PCA). The identification result is then used to accelerate the expansion similar to RRV around obstacles and through narrow passages. We also propose a modified bridge test to identify the entrance of a narrow passage and boost samples inside it. We have compared our method with known motion planners in several scenarios through simulations. Our method shows the best performance across all the tested planners in the tested scenarios.


2021 ◽  
Author(s):  
Xuehao Sun ◽  
Shuchao Deng ◽  
Baohong Tong ◽  
Shuang Wang ◽  
Shuai Ma ◽  
...  

Author(s):  
Xin-Jun Liu ◽  
Zhao Gong ◽  
Fugui Xie ◽  
Shuzhan Shentu

In this paper, a mobile robot named VicRoB with 6 degrees of freedom (DOFs) driven by three tracked vehicles is designed and analyzed. The robot employs a 3-PPSR parallel configuration. The scheme of the mechanism and the inverse kinematic solution are given. A path planning method of a single tracked vehicle and a coordinated motion planning of three tracked vehicles are proposed. The mechanical structure and the electrical architecture of VicRoB prototype are illustrated. VicRoB can achieve the point-to-point motion mode and the continuous motion mode with employing the motion planning method. The orientation precision of VicRoB is measured in a series of motion experiments, which verifies the feasibility of the motion planning method. This work provides a kinematic basis for the orientation closed loop control of VicRoB whether it works on flat or rough road.


Sign in / Sign up

Export Citation Format

Share Document