Real-Time Forward Kinematics Algorithm for Redundant Parallel Mechanism

Author(s):  
FuJun Kou ◽  
YiPing Chen ◽  
WeiYa Liu ◽  
Zhixue Liu
2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Haitao Liu ◽  
Ke Xu ◽  
Huiping Shen ◽  
Xianlei Shan ◽  
Tingli Yang

Abstract Direct kinematics with analytic solutions is critical to the real-time control of parallel mechanisms. Therefore, the type synthesis of a mechanism having explicit form of forward kinematics has become a topic of interest. Based on this purpose, this paper deals with the type synthesis of 1T2R parallel mechanisms by investigating the topological structure coupling-reducing of the 3UPS&UP parallel mechanism. With the aid of the theory of mechanism topology, the analysis of the topological characteristics of the 3UPS&UP parallel mechanism is presented, which shows that there are highly coupled motions and constraints amongst the limbs of the mechanism. Three methods for structure coupling-reducing of the 3UPS&UP parallel mechanism are proposed, resulting in eight new types of 1T2R parallel mechanisms with one or zero coupling degree. One obtained parallel mechanism is taken as an example to demonstrate that a mechanism with zero coupling degree has an explicit form for forward kinematics. The process of type synthesis is in the order of permutation and combination; therefore, there are no omissions. This method is also applicable to other configurations, and novel topological structures having simple forward kinematics can be obtained from an original mechanism via this method.


Author(s):  
Tae-Young Lee ◽  
Jae-Kyung Shim

Abstract The forward kinematics of the Stewart platform is to find the postures of the moving platform for a given set of leg lengths. In case of the general Stewart platform, the number of solutions of the problem is up to forty in the complex domain. Theoretically, it is not possible to uniquely determine the actual configuration with six leg length measurements only. An approach to get a single actual configuration is to make over-constrained system by adding extra sensors. This paper presents an algebraic elimination-based method for the real-time forward kinematics of the general Stewart platform with one extra sensor. The proposed algorithm does not require initial estimates of solutions unlike the numerical iterative methods, and can be implemented in C language using conventional double precision data with 15 significant digits. A numerical example is given to confirm the effectiveness and correctness of the developed algorithm for real-time computation.


Author(s):  
Yanwen Li ◽  
Yueyue Zhang ◽  
Lumin Wang ◽  
Zhen Huang

This paper investigates a novel 4-DOF 3-RRUR parallel manipulator, the number and the characteristics of its degrees of freedom are determined firstly, the rational input plan and the invert and forward kinematic solutions are carried out then. The corresponding numeral example of the forward kinematics is given. This type of parallel manipulators has a symmetrical structure, less accumulated error, and can be used to construct virtual-axis machine tools. The analysis in this paper will play an important role in promoting the application of such manipulators.


Sign in / Sign up

Export Citation Format

Share Document