An Object Detection Method Based on Independent Local Features

2006 ◽  
Vol 18 (6) ◽  
pp. 744-750
Author(s):  
Ryouta Nakano ◽  
◽  
Kazuhiro Hotta ◽  
Haruhisa Takahashi

This paper presents an object detection method using independent local feature extractor. Since objects are composed of a combination of characteristic parts, a good object detector could be developed if local parts specialized for a detection target are derived automatically from training samples. To do this, we use Independent Component Analysis (ICA) which decomposes a signal into independent elementary signals. We then used the basis vectors derived by ICA as independent local feature extractors specialized for a detection target. These feature extractors are applied to a candidate area, and their outputs are used in classification. However, the number of dimension of extracted independent local features is very high. To reduce the extracted independent local features efficiently, we use Higher-order Local AutoCorrelation (HLAC) features to extract the information that relates neighboring features. This may be more effective for object detection than simple independent local features. To classify detection targets and non-targets, we use a Support Vector Machine (SVM). The proposed method is applied to a car detection problem. Superior performance is obtained by comparison with Principal Component Analysis (PCA).

Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 196 ◽  
Author(s):  
Lihui Zhang ◽  
Riletu Ge ◽  
Jianxue Chai

China’s energy consumption issues are closely associated with global climate issues, and the scale of energy consumption, peak energy consumption, and consumption investment are all the focus of national attention. In order to forecast the amount of energy consumption of China accurately, this article selected GDP, population, industrial structure and energy consumption structure, energy intensity, total imports and exports, fixed asset investment, energy efficiency, urbanization, the level of consumption, and fixed investment in the energy industry as a preliminary set of factors; Secondly, we corrected the traditional principal component analysis (PCA) algorithm from the perspective of eliminating “bad points” and then judged a “bad spot” sample based on signal reconstruction ideas. Based on the above content, we put forward a robust principal component analysis (RPCA) algorithm and chose the first five principal components as main factors affecting energy consumption, including: GDP, population, industrial structure and energy consumption structure, urbanization; Then, we applied the Tabu search (TS) algorithm to the least square to support vector machine (LSSVM) optimized by the particle swarm optimization (PSO) algorithm to forecast China’s energy consumption. We collected data from 1996 to 2010 as a training set and from 2010 to 2016 as the test set. For easy comparison, the sample data was input into the LSSVM algorithm and the PSO-LSSVM algorithm at the same time. We used statistical indicators including goodness of fit determination coefficient (R2), the root means square error (RMSE), and the mean radial error (MRE) to compare the training results of the three forecasting models, which demonstrated that the proposed TS-PSO-LSSVM forecasting model had higher prediction accuracy, generalization ability, and higher training speed. Finally, the TS-PSO-LSSVM forecasting model was applied to forecast the energy consumption of China from 2017 to 2030. According to predictions, we found that China shows a gradual increase in energy consumption trends from 2017 to 2030 and will breakthrough 6000 million tons in 2030. However, the growth rate is gradually tightening and China’s energy consumption economy will transfer to a state of diminishing returns around 2026, which guides China to put more emphasis on the field of energy investment.


Author(s):  
Hongjuan Yao ◽  
Xiaoqiang Zhao ◽  
Wei Li ◽  
Yongyong Hui

Batch process generally has varying dynamic characteristic that causes low fault detection rate and high false alarm rate, and it is necessary and urgent to monitor batch process. This paper proposes a global enhanced multiple neighborhoods preserving embedding based fault detection strategy for dynamic batch process. Firstly, the angle neighbor is defined and selected to compensate for the insufficient expression for the spatial similarity of samples only by using the distance neighbor, and the time neighbor is introduced to describe the time correlations between samples. These three types of neighbors can fully characterize the similarity of the samples in time and space. Secondly, considering the minimum reconstruction error and the order information of three types of neighbors, an enhanced objective function is constructed to prevent the loss of order information when neighborhood preserving embedding (NPE) calculates the reconstruction weights. Furthermore, the enhanced objective function and a global objective function are organically combined to extract both global and local features, to describe process dynamics and visualize process data in a low-dimensional space. Finally, a monitoring index based on support vector data description is constructed to eliminate adverse effects of non-Gaussian data for monitoring performance. The advantages of the proposed method over principal component analysis, neighborhood preserving embedding, dynamic principal component analysis and time NPE are demonstrated by a numerical example and the penicillin fermentation process simulation.


Sign in / Sign up

Export Citation Format

Share Document