Cooperative wireless power transmission method based on time reversal technology

Author(s):  
Guangmin Zhang ◽  
Yue Song ◽  
Gangbing Song
2020 ◽  
Vol 53 (3-4) ◽  
pp. 441-453
Author(s):  
V Senthil Nayagam ◽  
L Premalatha

This work mainly deals with replacing the wired power transmission method for charging electric vehicle with the help of an efficient wireless power transmission method. For identifying an efficient wireless power transmission method, the inductive power transfer method and the laser optic method are taken into consideration to charge the electric vehicle battery. These methods are compared by hardware implementation for various conditions. Wireless power transmission is an emerging technology utilized to charge the electric vehicle battery through an air gap. The use of this new charging technique is due to its easy access from annoying charging cables, better efficiency, and smaller charging time. Also, it contributes to the remarkable reduction of pollutants and carbon dioxide (CO2) emissions into the atmosphere by the conventional vehicles. However, the implementation of inductive charging for electric vehicle still presents challenges in terms of power transfer efficiency, transmission distance, utilization of heavy batteries with ripple-free and charging time, and stress on compensation network to maintain resonant condition for maximum power transfer. This system will be verified through the simulation in MATLAB/Simulink environment. The simulation results of the inductive power transfer method and the comparison of hardware setup results with laser optic hardware setup have to be verified.


2022 ◽  
Vol 71 (1) ◽  
pp. 014101-014101
Author(s):  
Zhang Zhi-Yuan ◽  
◽  
Li Bing ◽  
Liu Shi-Qi ◽  
Zhang Hong-Lin ◽  
...  

2020 ◽  
Vol 10 (14) ◽  
pp. 4694
Author(s):  
Jae Sik Jin ◽  
Sunghun Jung ◽  
Han Joo Kim

In this study, a wireless power transmission (WPT) system for high power was developed to supply the wirelessly powered transfer cart for a clean environment (such as liquid crystal display (LCD), semiconductor, and flat panel display (FPD) device industries) to improve the cleanliness of related industrial production lines and save energy. The power transmission method of WPT and the core design were optimized, and a shortened track was fabricated to enable WPT via short power lines for diverse applications in a small space-constrained workshop. In realizing the shortened Litz wire system, the amount of heat generated increased due to the increased resistance in the system, and efforts were made to improve the thermal performance. A simple approach was also proposed to estimate the skin depth caused by the skin effects in a cable made up of multiple strands of multiple wires, validated through thermal analysis by using ANSYS software in terms of heat generation by an electric field. Structure designs were implemented to improve the heat transfer performance, and the experimental results of WPT systems at a power level of 21.54 kW demonstrate that the power transfer distance of WPT was above 15 mm with a charging efficiency above 83.24%.


2011 ◽  
Vol E94-B (11) ◽  
pp. 3172-3174 ◽  
Author(s):  
Takashi MARUYAMA ◽  
Tatsuya SHIMIZU ◽  
Mamoru AKIMOTO ◽  
Kazuki MARUTA

Sign in / Sign up

Export Citation Format

Share Document