A Comparison of Wireless Node Topologies for Network Coding Using Practical Path-Loss Models

Author(s):  
F. J. Böning ◽  
A. S. J. Helberg ◽  
M. J. Grobler
2007 ◽  
Vol 1 (3) ◽  
pp. 602 ◽  
Author(s):  
L.Q. Hu ◽  
H. Yu ◽  
Y. Chen
Keyword(s):  

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Caleb Phillips ◽  
Douglas Sicker ◽  
Dirk Grunwald

We seek to provide practical lower bounds on the prediction accuracy of path loss models. We describe and implement 30 propagation models of varying popularity that have been proposed over the last 70 years. Our analysis is performed using a large corpus of measurements collected on production networks operating in the 2.4 GHz ISM, 5.8 GHz UNII, and 900 MHz ISM bands in a diverse set of rural and urban environments. We find that the landscape of path loss models is precarious: typical best-case performance accuracy of these models is on the order of 12–15 dB root mean square error (RMSE) and in practice it can be much worse. Models that can be tuned with measurements and explicit data fitting approaches enable a reduction in RMSE to 8-9 dB. These bounds on modeling error appear to be relatively constant, even in differing environments and at differing frequencies. Based on our findings, we recommend the use of a few well-accepted and well-performing standard models in scenarios wherea prioripredictions are needed and argue for the use of well-validated, measurement-driven methods whenever possible.


Author(s):  
Ognen Ognenoski ◽  
Di Kong ◽  
Boyan Ivanov ◽  
Yu An ◽  
Adam Green

Author(s):  
Kaveh Pahlavan ◽  
Yunxing Ye ◽  
Ruijun Fu ◽  
Umair Khan

In this invited paper, the authors introduce an overview of the fundamentals of radio frequency (RF) channel measurement and modeling techniques needed for localization inside the human body. To address these fundamentals, the authors use capsule endoscopy as an example application. The authors first provide the results of the Cramer Rao Lower Bound (CRLB) for received signal strength (RSS) based endoscopy capsule localization, inside the human body, using existing path-loss models for radio propagation. Then challenges demanding further research are highlighted for attaining more precise localization using the time-of-arrival (TOA) based ranging techniques.


Sign in / Sign up

Export Citation Format

Share Document