Experimental Path Loss Models Comparison and Localization of Wireless Endoscopic Capsule in the Ultra-Wideband Frequency Band

Author(s):  
Sofia Perez-Simbor ◽  
Martina Barbi ◽  
Mehrab Ramzan ◽  
Xiao Fang ◽  
Concepcion Garcia-Pardo ◽  
...  
2007 ◽  
Vol 1 (3) ◽  
pp. 602 ◽  
Author(s):  
L.Q. Hu ◽  
H. Yu ◽  
Y. Chen
Keyword(s):  

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Caleb Phillips ◽  
Douglas Sicker ◽  
Dirk Grunwald

We seek to provide practical lower bounds on the prediction accuracy of path loss models. We describe and implement 30 propagation models of varying popularity that have been proposed over the last 70 years. Our analysis is performed using a large corpus of measurements collected on production networks operating in the 2.4 GHz ISM, 5.8 GHz UNII, and 900 MHz ISM bands in a diverse set of rural and urban environments. We find that the landscape of path loss models is precarious: typical best-case performance accuracy of these models is on the order of 12–15 dB root mean square error (RMSE) and in practice it can be much worse. Models that can be tuned with measurements and explicit data fitting approaches enable a reduction in RMSE to 8-9 dB. These bounds on modeling error appear to be relatively constant, even in differing environments and at differing frequencies. Based on our findings, we recommend the use of a few well-accepted and well-performing standard models in scenarios wherea prioripredictions are needed and argue for the use of well-validated, measurement-driven methods whenever possible.


Sign in / Sign up

Export Citation Format

Share Document