High-resolution range estimation technique using shift invariant TOA estimation algorithm for indoor localization of chirp spread spectrum system

Author(s):  
Ying-chun Li ◽  
Jong-Wha Chong
2012 ◽  
Vol 59 (3) ◽  
pp. 1622-1629 ◽  
Author(s):  
Jie Wang ◽  
Qinghua Gao ◽  
Yan Yu ◽  
Hongyu Wang ◽  
Minglu Jin

Author(s):  
Songzuo Liu ◽  
Habib Hussain Zuberi ◽  
Yi Lou ◽  
Muhmmad Bilal Farooq ◽  
Shahabuddin Shaikh ◽  
...  

AbstractLinear chirp spread spectrum technique is widely used in underwater acoustic communication because of their resilience to high multipath and Doppler shift. Linear frequency modulated signal requires a high spreading factor to nearly reach orthogonality between two pairs of signals. On the other hand, nonlinear chirp spread spectrum signals can provide orthogonality at a low spreading factor. As a result, it improves spectral efficiency and is more insensitive to Doppler spread than the linear counterpart. To achieve a higher data rate, we propose two variants (half cycle sine and full cycle sine) of the M-ary nonlinear sine chirp spread spectrum technique based on virtual time-reversal mirror (VTRM). The proposed scheme uses different frequency bands to transmit chirp, and VTRM is used to improve the bit error rate due to high multipath. Its superior Doppler sensitivity makes it suitable for underwater acoustic communication. Furthermore, the proposed method uses a simple, low-power bank of matched filters; thus, it reduces the overall system complexity. Simulations are performed in different underwater acoustic channels to verify the robustness of the proposed scheme.


2009 ◽  
Vol 2009 ◽  
pp. 1-4
Author(s):  
Dong Han ◽  
Caroline Fossati ◽  
Salah Bourennane ◽  
Zineb Saidi

A new algorithm which associates (Multiple Signal Classification) MUSIC with acoustic scattering model for bearing and range estimation is proposed. This algorithm takes into account the reflection and the refraction of wave in the interface of water-sediment in underwater acoustics. A new directional vector, which contains the Direction-Of-Arrival (DOA) of objects and objects-sensors distances, is used in MUSIC algorithm instead of classical model. The influence of the depth of buried objects is discussed. Finally, the numerical results are given in the case of buried cylindrical shells.


Sign in / Sign up

Export Citation Format

Share Document