Super Resolution TOA Estimation Algorithm with Maximum Likelihood ICA Based Pre-Processing

2013 ◽  
Vol E96.B (5) ◽  
pp. 1194-1201 ◽  
Author(s):  
Tetsuhiro OKANO ◽  
Shouhei KIDERA ◽  
Tetsuo KIRIMOTO
2017 ◽  
Vol 10 (2) ◽  
pp. 141-148
Author(s):  
Abdelmadjid Maali ◽  
Geneviève Baudoin ◽  
Ammar Mesloub

In this paper, we propose a novel energy detection (ED) receiver architecture combined with time-of-arrival (TOA) estimation algorithm, compliant to the IEEE 802.15.4a standard. The architecture is based on double overlapping integrators and a sliding correlator. It exploits a series of ternary preamble sequences with perfect autocorrelation property. This property ensures coding gain, which allows an accurate estimation of power delay profile (PDP). To improve TOA estimation, the interpolation of PDP samples is proposed and the architecture is validated by using an ultra-wideband signals measurements platform. These measurements are carried out in line-of-sight and non-line-of-sight multipath environments. The experimental results show that the ranging performances obtained by the proposed architecture are higher than those obtained by the conventional architecture based on a single-integrator in both LOS and NLOS environments.


Author(s):  
Nagarjuna Telagam ◽  
S Lakshmi ◽  
K Nehru

<p>All the devices are interconnected each other in digital form, for different applications the input data is encoded for error correcting and detecting purpose. The paper describes the transmission of QAM signals with two level encoded stages, i.e. convolutional and hamming coded GFDM system with 256-point IFFT at transmitter and FFT at the receiver using LABVIEW software. GFDM is a non-orthogonal, digital multicarrier transmission scheme which digitally implements the classical filter bank approach. GFDM transmits a block of frame composed by M time slots with K subcarriers. The higher order QAM is used because of transmitting more data but is less reliable when compared to lower order QAM. Based on GFDM specifications for the IEEE 802.11, latest 5G physical layer standards, the coding is provided by ½ rate encoder at the input side, and Maximum Likelihood decoder at the receiver side is used. The standard convolution code (7, [171, 133]), is used as encoder for the GFDM system. The GFDM complex values are displayed in the front panel, along with FFT and power spectrum is plotted for GFDM signal. The array of input bits and output bits are shown with green colour LED’s. The van de Beek algorithm is used at the receiver for maximum likelihood detection acts as convolutional decoder of GFDM signal. Next the signal is subjected to remove cyclic prefix and zero padding and applied to channel estimation algorithm. The un-equalized data and equalized data graph is shown in the front panel, before and after channel estimation VI. With BER VI available in the LABVIEW the data is normalized and its response is plotted with respect to SNR. BER values for different levels of encoders have shown in table for SNR values. This paper concludes the 32.91% improvement in BER for two levels of concatenated codes.Thus the GFDM signal outperforms the OFDM signal interms of BER for series levels of coding using labVIEW software.</p>


Sign in / Sign up

Export Citation Format

Share Document