Web Service Quality Prediction Method Based on Recurrent Neural Network

Author(s):  
Xiang Ye ◽  
Yanmei Wang ◽  
Zhichun Jia
2015 ◽  
Vol 2015 ◽  
pp. 1-15
Author(s):  
Yuhai Zhao ◽  
Ying Yin ◽  
Gang Sheng ◽  
Bin Zhang ◽  
Guoren Wang

Web services often run on highly dynamic and changing environments, which generate huge volumes of data. Thus, it is impractical to monitor the change of every QoS parameter for the timely trigger precaution due to high computational costs associated with the process. To address the problem, this paper proposes an active service quality prediction method based on extreme learning machine. First, we extract web service trace logs and QoS information from the service log and convert them into feature vectors. Second, by the proposed EC rules, we are enabled to trigger the precaution of QoS as soon as possible with high confidence. An efficient prefix tree based mining algorithm together with some effective pruning rules is developed to mine such rules. Finally, we study how to extract a set of diversified features as the representative of all mined results. The problem is proved to be NP-hard. A greedy algorithm is presented to approximate the optimal solution. Experimental results show that ELM trained by the selected feature subsets can efficiently improve the reliability and the earliness of service quality prediction.


2020 ◽  
Vol 52 (2) ◽  
pp. 1485-1500
Author(s):  
Jiaojiao Hu ◽  
Xiaofeng Wang ◽  
Ying Zhang ◽  
Depeng Zhang ◽  
Meng Zhang ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3994 ◽  
Author(s):  
Zhen Zhang ◽  
Changxin He ◽  
Kuo Yang

Surface electromyographic signal (sEMG) is a kind of bioelectrical signal, which records the data of muscle activity intensity. Most sEMG-based hand gesture recognition, which uses machine learning as the classifier, depends on feature extraction of sEMG data. Recently, a deep leaning-based approach such as recurrent neural network (RNN) has provided a choice to automatically learn features from raw data. This paper presents a novel hand gesture prediction method by using an RNN model to learn from raw sEMG data and predict gestures. The sEMG signals of 21 short-term hand gestures of 13 subjects were recorded with a Myo armband, which is a non-intrusive, low cost, commercial portable device. At the start of the gesture, the trained model outputs an instantaneous prediction for the sEMG data. Experimental results showed that the more time steps of data that were known, the higher instantaneous prediction accuracy the proposed model gave. The predicted accuracy reached about 89.6% when the data of 40-time steps (200 ms) were used to predict hand gesture. This means that the gesture could be predicted with a delay of 200 ms after the hand starts to perform the gesture, instead of waiting for the end of the gesture.


Sign in / Sign up

Export Citation Format

Share Document