Real time extraction of Visual Evoked Potentials

Author(s):  
Xiao-Ou Li ◽  
Xiao-Wei Zhang ◽  
Huan-qing Feng
2022 ◽  
Author(s):  
Yijia Wu ◽  
Xinhua Zeng ◽  
Kaiqiang Feng ◽  
Donglai Wei ◽  
Liang Song

Abstract With the rapid development of brain-computer interfaces (BCIs), human visual decoding, one of the important research directions of BCIs, has attracted a substantial amount of attention. However, most visual decoding studies have focused on graphic and image decoding. In this paper, we first demonstrate the possibility of building a new kind of task-irrelevant, simple and fast-stimulus BCI-based experimental paradigm that relies on visual evoked potentials (VEPs) during colour observation. Additionally, the features of visual colour information were found through reliable real-time decoding. We selected 9 subjects who did not have colour blindness to participate in our tests. These subjects were asked to observe red, green, and blue screens in turn with an interstimulus interval of 1 second. The machine learning results showed that the visual colour classification accuracy had a maximum of 93.73%. The latency evoked by visual colour stimuli was within the P300 range, i.e., 176.8 milliseconds for the red screen, 206.5 milliseconds for the green screen, and 225.3 milliseconds for the blue screen. The experimental results hereby show that the VEPs can be used for reliable colour real-time decoding.


2012 ◽  
Author(s):  
Jeffrey S. Bedwell ◽  
Yuri Rassovsky ◽  
Pamela Butler ◽  
Andrea Ranieri ◽  
Christopher Spencer ◽  
...  

1997 ◽  
Vol 36 (04/05) ◽  
pp. 315-318 ◽  
Author(s):  
K. Momose ◽  
K. Komiya ◽  
A. Uchiyama

Abstract:The relationship between chromatically modulated stimuli and visual evoked potentials (VEPs) was considered. VEPs of normal subjects elicited by chromatically modulated stimuli were measured under several color adaptations, and their binary kernels were estimated. Up to the second-order, binary kernels obtained from VEPs were so characteristic that the VEP-chromatic modulation system showed second-order nonlinearity. First-order binary kernels depended on the color of the stimulus and adaptation, whereas second-order kernels showed almost no difference. This result indicates that the waveforms of first-order binary kernels reflect perceived color (hue). This supports the suggestion that kernels of VEPs include color responses, and could be used as a probe with which to examine the color visual system.


Sign in / Sign up

Export Citation Format

Share Document