scholarly journals An investigation of self-organization in ad-hoc networks

Author(s):  
Ahmed Akl ◽  
Thierry Gayraud ◽  
Pascal Berthou
Author(s):  
Carlos M. S. Figueiredo ◽  
Antonio Alfredo F. Loureiro

Self-organization concept has become very important to the vision of pervasive and ubiquitous systems because such systems are expected to be composed by lots of interconnected computing devices immersed in the environments. In particular, general Mobile Ad hoc networks, and their specializations such as Sensor and Vehicular networks can be seen as the main technologies for pervasive infra-structures. These networks were conceived under the self-organization paradigm due to many characteristics such as a high number of devices, dynamic network topology and the need of autonomous operation. Although several mechanism and techniques for achieving self-organizing behavior are already applied, there is still the lack of general methodologies for the design of new self-organizing functions. Thus, this chapter will present an overview of self-organizing networks introducing important functions and techniques, and it will focus on important design aspects that can be useful to new designs.


Author(s):  
M.A. Sánchez-Acevedo ◽  
E. López-Mellado ◽  
F. Ramos-Corchado

Self-organization is a phenomenon in nature which has been studied in several areas, namely biology, thermodynamics, cybernetics, computing modeling, and economics. Systems exhibiting self-organization have well defined characteristics such as robustness, adaptability, and scalability, which make self-organization an attractive field of study for two kinds of applications: a) maintaining the communication among mobile devices in wireless networks, and b) coordination of swarms of mobile robots. In ad hoc networks, there is not necessarily an underlying infrastructure in which the nodes can maintain communicated with other nodes; so due to this feature, it is necessary to provide efficient self-organization algorithms for routing, managing, and reconfiguring the network. Furthermore, self-organization in nature provide clear examples about how complex behaviors can arise from only local interaction between entities, namely the ants colony, feather formation, and flock of birds. Based on the above mentioned examples, several algorithms have been proposed to accomplish robot formations using only local interactions. Due to resource constraints in mobile devices, selforganization requires simple algorithms for maintaining and adapting wireless networks. The use of resources for establishing robot formations can be reduced by improving simple rules to accomplish the formation. This article first presents a brief overview of several works developed in ad hoc networks; then, delves deeper into the key algorithms; and finally, challenges arising in this area are discussed.


Sign in / Sign up

Export Citation Format

Share Document