A wireless sensor network based low cost and energy efficient frame work for precision agriculture

Author(s):  
Rajinder Kumar Math ◽  
Nagaraj V Dharwadkar
2016 ◽  
Vol 16 (6) ◽  
pp. 123-132 ◽  
Author(s):  
Cunjiang Yu

Abstract The wireless sensor network covers more scale with more sensor nodes for larger scale agriculture. The article describes improvement of DV-Hop Algorithm to locate the nodes with quadrilateral range positioning method, so that the difficulty of dilatation method in agriculture actual application to be solved. The analog test for the algorithm is conducted and is mainly developed for the average locating error with illustration and discussion on the proportion relations of average error, average connectivity and anchor nodes. According to the analog results, the algorithm obtains better effect on the average locating error, which improves the accuracy of the algorithm.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7243
Author(s):  
Jaime Lloret ◽  
Sandra Sendra ◽  
Laura Garcia ◽  
Jose M. Jimenez

The use of precision agriculture is becoming more and more necessary to provide food for the world’s growing population, as well as to reduce environmental impact and enhance the usage of limited natural resources. One of the main drawbacks that hinder the use of precision agriculture is the cost of technological immersion in the sector. For farmers, it is necessary to provide low-cost and robust systems as well as reliability. Toward this end, this paper presents a wireless sensor network of low-cost sensor nodes for soil moisture that can help farmers optimize the irrigation processes in precision agriculture. Each wireless node is composed of four soil moisture sensors that are able to measure the moisture at different depths. Each sensor is composed of two coils wound onto a plastic pipe. The sensor operation is based on mutual induction between coils that allow monitoring the percentage of water content in the soil. Several prototypes with different features have been tested. The prototype that has offered better results has a winding ratio of 1:2 with 15 and 30 spires working at 93 kHz. We also have developed a specific communication protocol to improve the performance of the whole system. Finally, the wireless network was tested, in a real, cultivated plot of citrus trees, in terms of coverage and received signal strength indicator (RSSI) to check losses due to vegetation.


Author(s):  
ER NEETIKA ◽  
SIMARPREET KAUR

The Wireless Sensor Network(WSN) has become an interesting field of research of the 21st century. It is a type of the wireless ad-hoc network. This has brought about developing low cost, low-power and multi-function sensor nodes. The network life for wireless sensor network plays an important role in survivability. Energy efficiency is one of the critical concerns for wireless sensor networks. Sensor nodes are strictly constrained in terms of storage, board energy and processing capacity. For these reasons, many new protocols have been proposed for the purpose of data routing in sensor networks. These protocols can be classified into three main categories: data-centric, location-based and hierarchical. This paper mainly deals with some of the major Energy-efficient hierarchical routing protocols for wireless sensor networks. First we will discuss the energy-efficient Hierarchical routing protocols in brief along with their important features, objectives, drawbacks and area of application. Finally, we provide a comparison of these various protocols.


Sign in / Sign up

Export Citation Format

Share Document