Enhanced electrical performance of the InP/InGaAs single heterojunction bipolar transistor in terms of the cutoff frequency

Author(s):  
J. Ouchrif ◽  
A. Baghdad ◽  
A. Sahel ◽  
A. Badri ◽  
A. Ballouk
Author(s):  
Jihane Ouchrif ◽  
Abdennaceur Baghdad ◽  
Aicha Sahel ◽  
Abdelmajid Badri ◽  
Abdelhakim Ballouk

<p>In telecommunication systems, Heterojunction Bipolar Transistors (HBTs) are used extensively due to their good electrical characteristics. The work presented in this paper aims to enhance the electrical performance of the InP / InGaAs Single Heterojunction Bipolar Transistor (SHBT) in terms of the static current gain β. Silvaco’s TCAD tools were used for the simulation of the output characteristics of the studied electronic device. Initially, we used the interactive tool Deckbuild to define the simulation program and the device editor DevEdit to design the device structure, and we also used the simulator Atlas which allows the prediction of the electrical characteristics of most semiconductor devices. Because of several phenomena occuring within the electronic device SHBT, we added some physical models included in the simulator such as SRH, BBT.STD. Afterwards, we investigated the influence of doping concentrations of the base and the collector N<sub>b</sub> and N<sub>c</sub> on the electrical performance of the InP/InGaAs SHBT, and particularly in terms of the static current gain β. Finally, based on optimal values of the selected parameters, we have defined an optimized device that has a highest current gain β.</p>


2004 ◽  
Vol 14 (01) ◽  
pp. 265-284 ◽  
Author(s):  
SARAH ESTRADA ◽  
EVELYN HU ◽  
UMESH MISHRA

We discuss the first reported device characteristics of a wafer-fused heterojunction bipolar transistor (HBT), demonstrating the potential of wafer fusion for the production of electrically active heterostructures between lattice-mismatched materials. n-GaAs / n-GaN ("n-n") and p-GaAs / n-GaN ("p-n") heterojunctions were successfully fused and processed into current-voltage (I-V) test structures. The fusion and characterization of these simple structures provided insight for the fabrication of the more complicated HBT structures. Initial HBT devices performed with promising dc common-emitter I-V characteristics and Gummel plots. n-n, p-n, and HBT electrical performance was correlated with systematically varied fusion conditions, and with the quality of the fused interface, given both chemical information provided by secondary ion mass spectroscopy (SIMS) and structural information from high resolution transmission electron microscopy (HRTEM) analysis.


1988 ◽  
Vol 49 (C4) ◽  
pp. C4-579-C4-582
Author(s):  
J. G. METCALFE ◽  
R. C. HAYES ◽  
A. J. HOLDEN ◽  
A. P. LONG

1990 ◽  
Vol 26 (2) ◽  
pp. 122 ◽  
Author(s):  
J. Akagi ◽  
Y. Kuriyama ◽  
K. Morizuka ◽  
M. Asaka ◽  
K. Tsuda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document