Study of Cutoff Frequency at High Collector Current Density in SiGe Single-Heterojunction Bipolar Transistor

2004 ◽  
Vol 1 (3) ◽  
pp. 236-239 ◽  
Author(s):  
G. M. Khanduri ◽  
B. S. Panwar
2003 ◽  
Vol 799 ◽  
Author(s):  
Zhang Rong ◽  
Yoon Soon Fatt ◽  
Tan Kianhua ◽  
Sun Zhongzhe ◽  
Huang Qingfeng

ABSTRACTThis paper reports the characteristics of GaInP/GaAs heterojunction bipolar transistor (HBT) with carbon-doped GaAs base layer grown by solid source molecular beam epitaxy (SSMBE) using carbon tetrabromide (CBr4) as p-type dopant precursor. Hydrofluoric acid (HF) was used to passivate the GaInP/GaAs HBTs. At base bias voltages below 0.8V in the Gummel plot, the base current of large-area devices after HF treatment was greatly reduced. This indicates that the extrinsic base surface recombination current was greatly reduced. After HF treatment, detailed DC characterization of the device performance from 300K to 380K was carried out and the carrier transport properties were investigated. The base current and collector current ideality factors at 300K were 1.12 and 1.01, respectively. This indicates that the space- charge region recombination current in the base is insignificant. From the temperature- dependent Gummel plot, the activation energies of collector current and base current were obtained. For the collector current, the activation energy is 1.4eV, which is close to the bandgap of the GaAs base. This indicates that the collector current is determined by the drift-diffusion process, in which an energy barrier of the same magnitude as the base bandgap is to be overcome by electrons before they reach the collector. For the base current, the activation energy is also 1.4eV, which is close to the bandgap of GaAs, indicating that band-to-band recombination plays a dominant role in the base current. No trap-related recombination was observed for the base and collector currents, which further indicates the high quality carbon-doped GaAs base material for the HBT structures.


2001 ◽  
Vol 680 ◽  
Author(s):  
Yumin Zhang ◽  
P. Paul Ruden

ABSTRACTA novel hybrid model and simulation results for an advanced, graded base AlGaN/GaN heterojunction bipolar transistor structure are presented. The base of the n-p-n HBT examined has two parts, a linearly graded AlGaN layer on the emitter side and a heavily p-doped GaN layer on the collector side. In the hybrid model developed here the potential profile is first calculated self-consistently in the biased state taking into account ionized impurity charges, polarization charges, and majority carrier charges. The minority carrier transport is examined subsequently. Injection of electrons from the emitter is modeled as a thermionic emission process. The minority electron transport process in the graded region is drift-dominated due to the large built-in effective field strength. In the low-field GaN layer of the base, electron transport is assumed to be diffusion-dominated. High-level injection effects are modeled in the framework of the Gummel-Poon model. Example structure design parameters are presented and it is found that the calculated current gain can be greater than 25, with a collector current density of 104A/cm2.


2011 ◽  
Vol 23 (2) ◽  
pp. 545-549 ◽  
Author(s):  
温景超 Wen Jingchao ◽  
石瑞英 Shi Ruiying ◽  
龚敏 Gong Min ◽  
唐龙谷 Tang Longgu ◽  
田野 Tian Ye ◽  
...  

2021 ◽  
Vol 2065 (1) ◽  
pp. 012013
Author(s):  
Guofang Yu ◽  
Jie Cui ◽  
Yue Zhao ◽  
Jun Fu ◽  
Tian-Ling Ren

Abstract A high breakdown voltage silicon-germanium heterojunction bipolar transistor operated over a wide temperature range from 300 K to 10 K has been investigated. The measured Gummel characteristics illustrate that the collector current and base current both shift to the higher voltage as the temperature decreases. The fT/fmax are extracted to be 23/40 GHz at 300K, 28/40 GHz at 90 K, and 25/37GHz at 10K, respectively. The effective amplification range becomes narrow as the temperature decreases. And the ideality factor of base current in the low current region is shown to be temperature-dependent and its value is much larger than 2 at cryogenic temperatures. This phenomenon indicates that the base current is not only contributed by drift, diffusion, and Shockley-Read-Hall recombination, but also by trap-assisted tunneling. The Hurkx local trap-assisted tunneling has been used to analyze the non-ideal base transport mechanism. And a calibrated TCAD device model is developed to further verify this non-ideal transport mechanism.


1988 ◽  
Vol 144 ◽  
Author(s):  
Michael E. Kim ◽  
Aaron K. Oki ◽  
James B. Camou ◽  
Gary M. Gorman ◽  
Donald K. Umemoto ◽  
...  

ABSTRACTGaAs/AlGaAs N-p-n heterojunction bipolar transistor (GaAs HBT) device and integrated circuit technology which offers key advantages over advanced silicon bipolar and III-V compound field-effect transistors is maturing towards system insertion. The TRW device and IC fabrication process, basic HBT dc and RF performance, examples of device and IC applications, and technology qualification work are presented and serves as a basis for discussing overall technology issues and impact. A relaxed 3-μm emitter-up, self-aligned base ohmic metal (SABM) HBT process and simplified molecularbeam epitaxial profiles are used for near-term producibility. The HBTs have simultaneous fT, fmax≈20–40 GHz and dc current gain ß≈50–100 at collector current density JC=3 kA/cm2 and Early voltage VA≈200–300 with capability for MSI-LSI integration levels. Versatile dc-20 GHz analog, 3–6 Gb/s digital, and 2–3 Gs/s A/D conversion functions are demonstrated with a common 3-μm SABM HBT process which facilitates single-chip multifunctional capability. Key improvements are realized over Si bipolar and GaAs-related FET (e.g. MESFET and HEMT) approaches in operational frequency, gain-bandwidth product, harmonic distortion, 1/f noise, power consumption, and size reduction.


2014 ◽  
Vol 701-702 ◽  
pp. 1177-1180
Author(s):  
Liang Chen

The effect of thermal resistans onIC-VBEfly-back characteristic of power SiGe heterojunction bipolar transistor is studied through theoretical analysis, computer simulations, and experimental measurements. It is found that a suitable thermal resistans can make the collector current achieve the second fly-back point before transistors are burned-out, and then returns to a stable situation. Such a thermal resistans is beneficial to the thermal stability. When the thermal resistans is small, the curve ofIC-VBEfly-back characteristic of HBT has no fly-back point. While the thermal resistans increases, the curve ofIC-VBEfly-back characteristic of HBT has two fly-back points.


Sign in / Sign up

Export Citation Format

Share Document